Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

GBPT: %\[8\sqrt {\frac{{2x - 3}}{{x + 1}}} + 3 \ge 6\sqrt {2x - 3} + \frac{4}{{\sqrt {x + 1} }}\]


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 hoaadc08

hoaadc08

    Trung úy

  • Thành viên
  • 777 Bài viết
  • Giới tính:Nữ
  • Đến từ:Tp Hồ Chí Minh
  • Sở thích:Âm nhạc - Toán học - Bài giảng thuyết pháp (Phật giáo)

Đã gửi 03-07-2013 - 23:37

 Giải bất phương trình :
%\[8\sqrt {\frac{{2x - 3}}{{x + 1}}} + 3 \ge 6\sqrt {2x - 3} + \frac{4}{{\sqrt {x + 1} }}\]

#2 hungvuhuu

hungvuhuu

    Binh nhất

  • Thành viên
  • 28 Bài viết
  • Giới tính:Nam

Đã gửi 04-07-2013 - 06:14

 Giải bất phương trình :
%\[8\sqrt {\frac{{2x - 3}}{{x + 1}}} + 3 \ge 6\sqrt {2x - 3} + \frac{4}{{\sqrt {x + 1} }}\]

$$ \begin{gathered} 8\sqrt {\frac{{2x - 3}} {{x + 1}}} + 3 \geqslant 6\sqrt {\left( {2x - 3} \right)} + \frac{4} {{\sqrt {x + 1} }} \\ \Leftrightarrow 2\sqrt {2x - 3} \left( {\frac{4} {{\sqrt {x + 1} }} - 3} \right) - \left( {\frac{4} {{\sqrt {x + 1} }} - 3} \right) \geqslant 0 \\ \Leftrightarrow \left( {2\sqrt {2x - 3} - 1} \right)\left( {\frac{4} {{\sqrt {x + 1} }} - 3} \right) \geqslant 0 \\ \end{gathered} $$

đến đấy chắc là hoaadc08 hiểu phải làm gì rồi






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh