Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh ba đường vuông góc đồng quy

đồng quy song song đường trung bình

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1560 Bài viết
  • Giới tính:Không khai báo
  • Sở thích:Being and Algebraic Geometry

Đã gửi 05-08-2013 - 09:48

Cho tam giác ABC ; các đường cao AD ; BE ; CF . Đường tròn đi qua D ; E ; F cắt BC ; CA ; AB tại M ; N; P . Chứng minh các đường vuông góc với các cạnh tam giác ABC hạ từ M ; N ; P đồng quy với nhau .

P/s : theo như hình vẽ và cách chứng minh của minh thì đường tròn đi qua D ; E ; F cắt các cạnh A ; B ; C tại 3 trung điểm . Nếu ai cũng làm ra như thế thì ghi chứng minh ở đây nhé .


Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#2 Juliel

Juliel

    Thượng úy

  • Thành viên
  • 1240 Bài viết
  • Giới tính:Nam
  • Đến từ:Đại học Ngoại thương TP.HCM
  • Sở thích:Đam mỹ

Đã gửi 05-08-2013 - 12:39



Cho tam giác ABC ; các đường cao AD ; BE ; CF . Đường tròn đi qua D ; E ; F cắt BC ; CA ; AB tại M ; N; P . Chứng minh các đường vuông góc với các cạnh tam giác ABC hạ từ M ; N ; P đồng quy với nhau .

P/s : theo như hình vẽ và cách chứng minh của minh thì đường tròn đi qua D ; E ; F cắt các cạnh A ; B ; C tại 3 trung điểm . Nếu ai cũng làm ra như thế thì ghi chứng minh ở đây nhé .

 

Bây giờ nếu ta gọi $M'$ là trung điểm của $BC$, chỉ cần chứng minh được $M'$ thuộc $(DEF)$ thì ta được $M\equiv M'$, tức là $M$ là trung điểm của $BC$. Thật vậy, vì môt đường thẳng chỉ cắt đường tròn tối đa 2 điểm. Xét đường thẳng $BC$ cắt đường tròn $(DEF)$, theo đề bài thì  $BC$ cắt $(DEF)$ tại hai điểm $M$ và $D$. Gỉa sử $M$ và $M'$ không trùng nhau thì ta đã chứng minh $M'$ thuộc $(DEF)$, suy ra $BC$ cắt $(DEF)$ tại 3 điểm (vô lí)

Tương tự thì $N,P$ cũng sẽ là trung điểm của $AC,AB$. Ba đường thẳng đề bài cho sẽ đồng quy tại tâm đường tròn ngoại tiếp tam giác $ABC$.

Banve.JPG

Do vậy ở đây, ta xét điểm $M$ là trung điểm của $BC$ và ta chứng minh $M$ thuộc $(DEF)$ bằng cách chứng minh tứ giác $DFEM$ là tứ giác nội tiếp

Ta có $\widehat{FEM}=\widehat{FEB}+\widehat{BEM}$

Mà $\widehat{FCB}=\widehat{FEB}$ ($EFBC$ là tứ giác nội tiếp)

và $\widehat{BEM}=\widehat{MBE}=\widehat{DFC}$

($\widehat{BEM}=\widehat{MBE}$ là vì tam giác $BEM$ cân tại $M$ theo tính chất trung tuyến trong tam giác vuông,

$\widehat{MBE}=\widehat{DFC}$ là do tứ giác $FHDB$ nội tiếp với $H$ là trực tâm tam giác $ABC$)

Suy ra $\widehat{FEM}=\widehat{FCB}+\widehat{DFC}$

Lại có $\widehat{FDB}=\widehat{FCB}+\widehat{DFC}$ (tính chất góc ngoài tam giác)

Suy ra $\widehat{FEM}=\widehat{FDB}$

Do đó $EFDM$ là tứ giác nội tiếp (góc ngoài bằng góc đối trong)

Bài toán kết thúc

 

Đường tròn nói trên chính là đường tròn Euler, đường tròn Chín Điểm, đường tròn này còn đi qua trung điểm các đoạn $HA,HB,HC$ và tâm của nó là trung điểm của đoạn $OH$ với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.


Bài viết đã được chỉnh sửa nội dung bởi Juliel: 05-08-2013 - 12:40

Đừng rời xa tôi vì tôi lỡ yêu người mất rồi !
 

Welcome to My Facebook !


#3 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1560 Bài viết
  • Giới tính:Không khai báo
  • Sở thích:Being and Algebraic Geometry

Đã gửi 05-08-2013 - 16:07

cách em ngắn hơn bác ạ ; 

Bây giờ nếu ta gọi $M'$ là trung điểm của $BC$, chỉ cần chứng minh được $M'$ thuộc $(DEF)$ thì ta được $M\equiv M'$, tức là $M$ là trung điểm của $BC$. Thật vậy, vì môt đường thẳng chỉ cắt đường tròn tối đa 2 điểm. Xét đường thẳng $BC$ cắt đường tròn $(DEF)$, theo đề bài thì  $BC$ cắt $(DEF)$ tại hai điểm $M$ và $D$. Gỉa sử $M$ và $M'$ không trùng nhau thì ta đã chứng minh $M'$ thuộc $(DEF)$, suy ra $BC$ cắt $(DEF)$ tại 3 điểm (vô lí)

Tương tự thì $N,P$ cũng sẽ là trung điểm của $AC,AB$. Ba đường thẳng đề bài cho sẽ đồng quy tại tâm đường tròn ngoại tiếp tam giác $ABC$.

attachicon.gifBanve.JPG

Do vậy ở đây, ta xét điểm $M$ là trung điểm của $BC$ và ta chứng minh $M$ thuộc $(DEF)$ bằng cách chứng minh tứ giác $DFEM$ là tứ giác nội tiếp

Ta có $\widehat{FEM}=\widehat{FEB}+\widehat{BEM}$

Mà $\widehat{FCB}=\widehat{FEB}$ ($EFBC$ là tứ giác nội tiếp)

và $\widehat{BEM}=\widehat{MBE}=\widehat{DFC}$

($\widehat{BEM}=\widehat{MBE}$ là vì tam giác $BEM$ cân tại $M$ theo tính chất trung tuyến trong tam giác vuông,

$\widehat{MBE}=\widehat{DFC}$ là do tứ giác $FHDB$ nội tiếp với $H$ là trực tâm tam giác $ABC$)

Suy ra $\widehat{FEM}=\widehat{FCB}+\widehat{DFC}$

Lại có $\widehat{FDB}=\widehat{FCB}+\widehat{DFC}$ (tính chất góc ngoài tam giác)

Suy ra $\widehat{FEM}=\widehat{FDB}$

Do đó $EFDM$ là tứ giác nội tiếp (góc ngoài bằng góc đối trong)

Bài toán kết thúc

 

Đường tròn nói trên chính là đường tròn Euler, đường tròn Chín Điểm, đường tròn này còn đi qua trung điểm các đoạn $HA,HB,HC$ và tâm của nó là trung điểm của đoạn $OH$ với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.


Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh