Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$\sum\frac{1}{a^3+1}\geq \frac{3}{1+abc}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 phancuong123

phancuong123

    Binh nhất

  • Thành viên
  • 47 Bài viết
  • Giới tính:Nam
  • Đến từ:10A1 thpt chuyên PHAN BỘI CHÂU- NGHỆ AN
  • Sở thích:.............................................................

Đã gửi 30-08-2013 - 22:04

Cho $a,b,c\geqslant 1$.Chứng minh rằng:

$ \frac{1}{a^3+1}+\frac{1}{b^3+1}+\frac{1}{c^3+1}\geq \frac{3}{1+abc}$


Bài viết đã được chỉnh sửa nội dung bởi phanquockhanh: 30-08-2013 - 22:28


#2 nguyencuong123

nguyencuong123

    Thiếu úy

  • Thành viên
  • 587 Bài viết
  • Giới tính:Nam
  • Đến từ:10A1 THPT Chuyên Phan Bội Châu - Nghệ An
  • Sở thích:Được người khác chia sẻ thêm nhiều kiến thức về Toán học.

Đã gửi 30-08-2013 - 23:13

Ta có: Áp dụng bđt phụ: $\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$

Ta có: $\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}\geq \frac{2}{1+\sqrt{a^{3}b^{3}}}$

$\frac{1}{1+c^{3}}+\frac{1}{1+abc}\geq \frac{2}{1+\sqrt{abc^{4}}}$

Mà $\frac{1}{1+\sqrt{abc^{4}}}+\frac{1}{\sqrt{a^{3}b^{3}}}\geq \frac{2}{1+\sqrt[4]{(abc)^{4}}}=\frac{2}{1+abc}$

Từ các điều này suy ra đpcm


    :icon12:  :icon12:  :icon12:   Bình minh tắt nắng trời vương vấn :icon12:  :icon12:  :icon12:       

      :icon12: Một cõi chơi vơi, ta với ta  :icon12:       

:nav: My Facebook  :nav:  

 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh