Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Giải phương trình $8x^{3}-6x=\sqrt{2x+2}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 germany3979

germany3979

    Trung sĩ

  • Thành viên
  • 124 Bài viết

Đã gửi 25-09-2013 - 10:31

Giải phương trình $8x^{3}-6x=\sqrt{2x+2}$



#2 Phạm Hữu Bảo Chung

Phạm Hữu Bảo Chung

    Thượng úy

  • Thành viên
  • 1360 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường Đại học Bách khoa Hà Nội
  • Sở thích:Grey's Anatomy, Shameless, Game of Thrones

Đã gửi 25-09-2013 - 11:52

Giải

ĐK: $x \geq -1$
+ Nếu $x > 1$ thì phương trình ban đầu tương đương:
$8x^3 - 8x + 2x - \sqrt{2x + 2} = 0$
$\Leftrightarrow 8x(x^2 - 1) + \dfrac{4x^2 - 2x - 2}{2x + \sqrt{2x + 2}} = 0$
Do $4x^2 - 2x - 2= 2(x - 1)(2x + 1) > 0$ $\forall$ $x > 1$ nên $VT > 0 = VF$.

Vậy, x > 1 khiến hệ vô nghiệm.

 

+ Nếu $x \leq 1$, đặt $x = \cos{t}$, ta được:
$8\cos^3{t} - 6\cos{t} = \sqrt{2(\cos{t} + 1)}$

$\Leftrightarrow 2\cos{3t} = \sqrt{4\cos^2{\dfrac{t}{2}}} \Leftrightarrow \cos{3t} = \left |\cos{\dfrac{t}{2}}\right |$
 

Còn lại bạn tự giải nhé.

 


Thế giới này trở nên bị tổn thương quá nhiều không phải bởi vì sự hung bạo của những kẻ xấu xa mà chính bởi vì sự im lặng của những người tử tế :)

#3 germany3979

germany3979

    Trung sĩ

  • Thành viên
  • 124 Bài viết

Đã gửi 25-09-2013 - 16:26

 

Giải

ĐK: $x \geq -1$
+ Nếu $x > 1$ thì phương trình ban đầu tương đương:
$8x^3 - 8x + 2x - \sqrt{2x + 2} = 0$
$\Leftrightarrow 8x(x^2 - 1) + \dfrac{4x^2 - 2x - 2}{2x + \sqrt{2x + 2}} = 0$
Do $4x^2 - 2x - 2= 2(x - 1)(2x + 1) > 0$ $\forall$ $x > 1$ nên $VT > 0 = VF$.

Vậy, x > 1 khiến hệ vô nghiệm.

 

+ Nếu $x \leq 1$, đặt $x = \cos{t}$, ta được:
$8\cos^3{t} - 6\cos{t} = \sqrt{2(\cos{t} + 1)}$

$\Leftrightarrow 2\cos{3t} = \sqrt{4\cos^2{\dfrac{t}{2}}} \Leftrightarrow \cos{3t} = \left |\cos{\dfrac{t}{2}}\right |$
 

Còn lại bạn tự giải nhé.

 

Trường hợp 2: nếu $x\leq 1$ thì đặt $x=cost,t\epsilon \left [ 0;\pi \right ]$, lúc này $cos\frac{t}{2}$ không còn giá trị tuyệt đối phải không bạn???



#4 baotranthaithuy

baotranthaithuy

    Thượng sĩ

  • Thành viên
  • 291 Bài viết
  • Giới tính:Nữ

Đã gửi 12-10-2014 - 20:24

 

Giải

ĐK: $x \geq -1$
+ Nếu $x > 1$ thì phương trình ban đầu tương đương:
$8x^3 - 8x + 2x - \sqrt{2x + 2} = 0$
$\Leftrightarrow 8x(x^2 - 1) + \dfrac{4x^2 - 2x - 2}{2x + \sqrt{2x + 2}} = 0$
Do $4x^2 - 2x - 2= 2(x - 1)(2x + 1) > 0$ $\forall$ $x > 1$ nên $VT > 0 = VF$.

Vậy, x > 1 khiến hệ vô nghiệm.

 

+ Nếu $x \leq 1$, đặt $x = \cos{t}$, ta được:
$8\cos^3{t} - 6\cos{t} = \sqrt{2(\cos{t} + 1)}$

$\Leftrightarrow 2\cos{3t} = \sqrt{4\cos^2{\dfrac{t}{2}}} \Leftrightarrow \cos{3t} = \left |\cos{\dfrac{t}{2}}\right |$
 

Còn lại bạn tự giải nhé.

 

không có cách nào mà không dùng lượng giác để học sinh lớp 10 và trung học hiểu sao?






3 người đang xem chủ đề

0 thành viên, 3 khách, 0 thành viên ẩn danh