Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Định m để hàm số y= $mx^{4}+(m-1)x^{2}+1-2m$ với $m\in R$ để có một điểm cực trị


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 datanhlg

datanhlg

    Hạ sĩ

  • Thành viên
  • 50 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM

Đã gửi 30-09-2013 - 18:51

Định m để hàm số  y= $mx^{4}+(m-1)x^{2}+1-2m$ với $m\in R$ để có một điểm cực trị. Mọi người cho em hỏi tại sao sách giải lại có lời giải như thế này ạ:

Hs chỉ có một cực trị khi hàm số có nghiệm kép hay vô nghiệm:

$\begin{bmatrix} m=0\\ \left\{\begin{matrix} m\neq 0\\ \Delta ^{'}=-2m(m-1)\leq 0) \end{matrix}\right. \end{bmatrix}$

 

Vậy:phương trình bậc ba sau khi đạo hàm vẫn có $\Delta$ ạ?



#2 hxthanh

hxthanh

  • Thành viên
  • 3327 Bài viết
  • Giới tính:Nam

Đã gửi 30-09-2013 - 19:44

- Nếu $m=0$ thì hàm đã cho suy biến về hàm bậc $2$ là $y=-x^2+1$ (trường hợp này thỏa vì y'=0 có 1 nghiệm)

 

- Nếu $m\ne 0$ thì khảo sát bình thường $y'=x(4mx^2+2(m-1))$

 

Điều kiện phải là $4mx^2+2(m-1)=0$ một là vô nghiệm, hai là có nghiệm kép $x=0$


Cuộc sống thật nhàm chán! Ngày mai của ngày hôm qua chẳng khác nào ngày hôm qua của ngày mai, cũng như ngày hôm nay vậy!

#3 datanhlg

datanhlg

    Hạ sĩ

  • Thành viên
  • 50 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM

Đã gửi 30-09-2013 - 20:01

- Nếu $m=0$ thì hàm đã cho suy biến về hàm bậc $2$ là $y=-x^2+1$ (trường hợp này thỏa vì có nghiệm kép $x=1$)

 

- Nếu $m\ne 0$ thì khảo sát bình thường $y'=x(4mx^2+2(m-1))$

 

Điều kiện phải là $4mx^2+2(m-1)=0$ một là vô nghiệm, hai là có nghiệm kép $x=0$

Sao em thấy $y=-x^2+1$ có 2 nghiệm phân biệt ạ, như vậy thì trường hợp m = 0 không thỏa ạ ?

 

hxthanh






2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh