Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Tìm GTNN của M=$x^{4}+y^{4}-x^{2}y^{2}$

bất đẳng thức

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 SPhuThuyS

SPhuThuyS

    Trung sĩ

  • Thành viên
  • 127 Bài viết
  • Giới tính:Nam
  • Đến từ:Nghệ An
  • Sở thích:thích bóng đá và chơi game bóng đá

Đã gửi 09-10-2013 - 12:17

Cho $x^{2}+y^{2}-xy=1$. Tìm GTNN của M=$x^{4}+y^{4}-x^{2}y^{2}$


 

 


#2 Phạm Hữu Bảo Chung

Phạm Hữu Bảo Chung

    Thượng úy

  • Thành viên
  • 1360 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường Đại học Bách khoa Hà Nội
  • Sở thích:Grey's Anatomy, Shameless, Game of Thrones

Đã gửi 09-10-2013 - 13:00

Giải

Đặt xy = t

Từ giả thiết, ta có: $(x + y)^2 = 3xy + 1 \geq 0 \Rightarrow t \geq \dfrac{-1}{3}$

Mặt khác: $xy = x^2 + y^2 - 1 \geq 2xy - 1 \Rightarrow t \leq 1$

Ta có:
$M = x^4 + y^4 - x^2y^2 = (x^2 + y^2)^2 - 3x^2y^2 $
$M = (t + 1)^2 - 3t^2 = -2t^2 + 2t + 1 = -\dfrac{2}{3}(3t + 1)(t - 1) + \dfrac{2}{3}t + \dfrac{1}{3}$

 

Vì $\dfrac{-1}{3} \leq t \leq 1 \Rightarrow (3t + 1)(t - 1) \leq 0$

Vậy: $M \geq \dfrac{2}{3}t + \dfrac{1}{3} \geq \dfrac{1}{9}$

Kết luận: $Min_M = \dfrac{1}{9}$ khi $x = - y = \dfrac{1}{\sqrt{3}}$ và ngược lại.

 

 


Thế giới này trở nên bị tổn thương quá nhiều không phải bởi vì sự hung bạo của những kẻ xấu xa mà chính bởi vì sự im lặng của những người tử tế :)





Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: bất đẳng thức

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh