Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$ \begin{cases} x^3-2 x^2 y-15 x = 6 y (2 x-5-4 y)\\ \cdots \end{cases}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 TranLeQuyen

TranLeQuyen

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:Bến Tre
  • Sở thích:Toán, chăm sóc cây cỏ, sự lãng mạn...

Đã gửi 13-10-2013 - 10:19

Giải hệ

$$\begin{cases}
x^3-2 x^2 y-15 x = 6 y (2 x-5-4 y)\\
\frac{x^2}{8y}+\frac{2x}3=\sqrt{{x^3\over 3y}+{x^2\over4}}-\frac y2
\end{cases}$$

 


Bài viết đã được chỉnh sửa nội dung bởi TranLeQuyen: 13-10-2013 - 10:20

"Trong toán học, nghệ thuật nêu vấn đề có giá trị cao hơn việc giải quyết nó..."

 


#2 Phạm Hữu Bảo Chung

Phạm Hữu Bảo Chung

    Thượng úy

  • Thành viên
  • 1360 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường Đại học Bách khoa Hà Nội
  • Sở thích:Grey's Anatomy, Shameless, Game of Thrones

Đã gửi 13-10-2013 - 13:11

Giải

Phương trình thứ nhất của hệ tương đương:
$(x^3 - 2x^2y) - (15x - 30y) + (24y^2 - 12xy) = 0$

$\Leftrightarrow (x - 2y)(x^2 - 12y - 15) = 0 \Leftrightarrow \left[\begin{matrix}x = 2y\\x^2 = 12y + 15\end{matrix}\right.$

 

Phương trình thứ hai của hệ tương đương:
$\dfrac{3x^2 + 16xy + 12y^2}{24y} = \sqrt{\dfrac{x^3}{3y} + \dfrac{x^2}{4}}$

                                                                        

Chia cả 2 vế của phương trình cho y rồi đặt $t = \dfrac{x}{y}$, ta có:
$\dfrac{t^2}{8} + \dfrac{2t}{3} + \dfrac{1}{2} = \pm \sqrt{\dfrac{t^3}{3} + \dfrac{t^2}{4}}$

$\Leftrightarrow 3t^2 \pm 4|t|\sqrt{3(4t + 3)} + 4(4t + 3) = 0$

$\Rightarrow 3\dfrac{t^2}{4t + 3} \pm \dfrac{4\sqrt{3}|t|}{\sqrt{4t + 3}} + 4 = 0 \Leftrightarrow \sqrt{3}\dfrac{|t|}{\sqrt{4t + 3}} = \pm 2$

Vì $VT \geq 0 \Rightarrow \sqrt{3}\dfrac{|t|}{\sqrt{4t + 3}} = 2$

$\Leftrightarrow \left[\begin{matrix}t = 6\\t = \dfrac{-2}{3}\end{matrix}\right. \Rightarrow \left[\begin{matrix}x = 6y\\x = \dfrac{-2}{3}y\\\end{matrix}\right.$
Kết hợp với phương trình ban đầu để suy ra nghiệm.

 

 

                                                                                                   

 

 


Thế giới này trở nên bị tổn thương quá nhiều không phải bởi vì sự hung bạo của những kẻ xấu xa mà chính bởi vì sự im lặng của những người tử tế :)




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh