Đến nội dung

Hình ảnh

$\sum \frac{1}{(a+b)^{2}}\geq \frac{3\sqrt{3abc(a+b+c)}(a+b+c)^{2}}{4(ab+bc+ca)^{3}}$

bất đẳng thức và cực trị

  • Please log in to reply
Chủ đề này có 1 trả lời

#1
khonggiohan

khonggiohan

    Hạ sĩ

  • Thành viên
  • 53 Bài viết

 cho a,b,c là các số thực dương:

CMR:

$\sum \frac{1}{(a+b)^{2}}\geq \frac{3\sqrt{3abc(a+b+c)}(a+b+c)^{2}}{4(ab+bc+ca)^{3}}$


             

                 Đời cho tôi 1 vai diễn lớn, chỉ hiềm nỗi tôi không hiểu nổi cốt truyện


#2
KietLW9

KietLW9

    Đại úy

  • Điều hành viên THCS
  • 1737 Bài viết

Bất đẳng thức cần chứng minh mình nghĩ là: $\sum \frac{1}{(a+b)^{2}}\geq \frac{3\sqrt{3abc(a+b+c)}(a+b+c)^{2}}{4(ab+bc+ca)}$

Đây là lý do nó bị chôn vùi gần 10 năm


Trong cuộc sống không có gì là đẳng thức , tất cả đều là bất đẳng thức  :ukliam2:   :ukliam2: 

 

 

$\text{LOVE}(\text{KT}) S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \geqslant 0\forall S_a,S_b,S_c\geqslant 0$

 

 

 






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: bất đẳng thức và cực trị

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh