Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh $\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\geq \frac{(a+b+c)^2}{a^2+b^2+c^2}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 minh8x

minh8x

    Binh nhất

  • Thành viên
  • 32 Bài viết
  • Giới tính:Nam

Đã gửi 08-11-2013 - 11:09

Cho a,b,c dương. Chứng minh $\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\geq \frac{(a+b+c)^2}{a^2+b^2+c^2}$

 

Mod nào sửa tiêu đề giúp em với ạ, dài quá nên ko hiển thị hết đc công thức

Thanks!!!


Bài viết đã được chỉnh sửa nội dung bởi minh8x: 08-11-2013 - 11:11


#2 Phạm Hữu Bảo Chung

Phạm Hữu Bảo Chung

    Thượng úy

  • Thành viên
  • 1360 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường Đại học Bách khoa Hà Nội
  • Sở thích:Grey's Anatomy, Shameless, Game of Thrones

Đã gửi 08-11-2013 - 12:20

Giải

Ta có:
$\sqrt{\dfrac{2a}{a + b}} + \sqrt{\dfrac{2b}{b + c}} + \sqrt{\dfrac{2c}{c + a}}$

$= \dfrac{a^2}{\sqrt{\dfrac{a^3(a + b)}{2}}} + \dfrac{b^2}{\sqrt{\dfrac{b^3(b + c)}{2}}} + \dfrac{c^2}{\sqrt{\dfrac{c^3(c + a)}{2}}} \geq \dfrac{(a + b + c)^2}{\sqrt{\dfrac{a^3(a + b)}{2}} + \sqrt{\dfrac{b^3(b + c)}{2}} + \sqrt{\dfrac{c^3(c + a)}{2}}}$

Ta sẽ chứng minh:
$\sqrt{\dfrac{a^3(a + b)}{2}} + \sqrt{\dfrac{b^3(b + c)}{2}} + \sqrt{\dfrac{c^3(c + a)}{2}} \leq a^2 + b^2 + c^2 \, (1)$

Thật vậy:
$\sqrt{\dfrac{a^3(a + b)}{2}} = \sqrt{\dfrac{a^2(a^2 + ab)}{2}} \leq \dfrac{3a^2 + ab}{4}$

Từ đó suy ra:
$VT_{(1)} \leq \dfrac{3(a^2 + b^2 + c^2) + ab + ac + bc}{4} \leq a^2 + b^2 + c^2$

Do đó, ta có điều phải chứng minh.

 

 


Thế giới này trở nên bị tổn thương quá nhiều không phải bởi vì sự hung bạo của những kẻ xấu xa mà chính bởi vì sự im lặng của những người tử tế :)

#3 Yagami Raito

Yagami Raito

    Master Tetsuya

  • Thành viên
  • 1333 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:$\mathbb{THPT Chuyên Phan Bội Châu}$ $\\$

Đã gửi 08-11-2013 - 14:33

 

Giải

 

$\sqrt{\dfrac{a^3(a + b)}{2}} = \sqrt{\dfrac{a^2(a^2 + ab)}{2}} \leq \dfrac{3a^2 + ab}{4}$

 

 

Em không hiểu đoạn này lắm anh giải thích hộ em cái !


:nav: Học gõ công thức toán học tại đây

:nav: Hướng dẫn đặt tiêu đề tại đây

:nav: Hướng dẫn Vẽ hình trên diễn đàn toán tại đây

--------------------------------------------------------------

 


#4 Phuong Thu Quoc

Phuong Thu Quoc

    Trung úy

  • Thành viên
  • 784 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội

Đã gửi 08-11-2013 - 15:10

Em không hiểu đoạn này lắm anh giải thích hộ em cái !

$\sqrt{\frac{a^{2}\left ( a^{2}+ab \right )}{2}}=2.\sqrt{\frac{a^{2}}{2}.\frac{\left ( a^{2} +ab\right )}{4}}\leq \frac{a^{2}}{2}+\frac{a^{2}+ab}{4}=\frac{3a^{2}+ab}{4}$ (theo AM-GM )


Thà một phút huy hoàng rồi chợt tối

 

Còn hơn buồn le lói suốt trăm năm.

 

 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh