Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Ứng dụng của đạo hàm


  • Please log in to reply
Chưa có bài trả lời

#1 Lim

Lim

    Quét rác đêm

  • Hiệp sỹ
  • 858 Bài viết
  • Đến từ:Hải Phòng

Đã gửi 28-01-2005 - 00:50

Chào các bạn, :kiss

Ở cấp III các bạn đã làm quen với toán đạo hàm, tích phân, có một điều mà bạn tò mò muốn biết đó là " đạo hàm được ứng dụng vào đâu ?"

Topic này sẽ giới thiệu tới các bạn một số ứng dụng của đạo hàm trong cuộc sống. Các bác lớn vào tham gia để mở mang tầm nhìn cho các em nhỏ̉ nhé.

Mình biết được 4 mảng ứng dụng của đạo hàm:

- Toán cực trị
- Phương pháp Newton
- Vi phân
- Toán kinh tế

1) Toán cực trị :
Đây là một phần của toán tối ưu hóa, có ứng dụng rất nhiều trong xây dựng, thiết kế hay kinh doanh. Có thể các bạn đã tiếp xúc nhiều ở cấp III, nhưng không nghì rằng đó là toán ứng dụng.

Các bài toán dạng này không có phức tạp. Về phương pháp giải, bạn cần qua các bước sau:
- Thiết lập biểu thức liên hệ giữa các đại lượng, tham số, chú ý khoảng nghiêm và tập giá trị ( range ,domain.)
- Tính đạo hàm bậc I của phương trình trên. Xét giá trị của tham số, hay ẩn (x) để
f'(x} = f '© = 0
- So sánh giá trị f© với khoảng nghiệm và tập giá trị khác.
- Ta sẽ tìm được cực trị ( Min hoặc Max)

Ví dụ 1:
Bạn muốn xây dựng một bình chứa nước hình trụ thể tích 150 m^3. Đáy bằng bê tông giá 100.000 VND /m^2, thành bằng tôn, giá 90.000 VND /m^2, bề mặt bằng nhôm không han giá 120.000 VND/m^2. Vậy kích thước của bình chứa nước như thế nào để số tiền xây dựng nó là ít nhất ? ( Bạn thử giải xem, như một bài tập trong sách thôi) :kiss

Bài này rất quan thuộc phải không ? Công việc của mấy bác thợ xây cũng như vậy đó. Họ thiết kế sao cho chi phí là thấp nhất.

Ví dụ 2:
Một vận động viên chạy kết hợp ( với bơi), vận tốc bơi là 1.5 m/s , vận tốc chạy là 4.5m/s. Chiều dài dọc bờ hồ là 200m, chiều rộng của bờ hồ là 50 m. Vậy vận động viên này sẽ phải chạy bao xa trước khi bơi để thời gian là ngắn nhất.( Bạn thử giải xem sao)
Hình đã gửi


Các huấn luyên viên cũng đã tính toán kỹ, sao cho học trò của mình thi đạt kết quả cao nhất trong các cuộc chạy kết hợp này. Toán học cũng góp một phần trong thắng lại của họ đấy chứ.




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh