Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$H=\frac{a(b+c)}{(b+c)^{2}+a^{2}}+\frac{b(c+a)}{(c+a)^{2}+b^{2}}+\frac{c(a+b)}{(a+b)^{2}+c^{2}}$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 thanhelf96

thanhelf96

    Trung sĩ

  • Thành viên
  • 155 Bài viết
  • Giới tính:Nữ
  • Sở thích:nhiều woa đếm k xuể hehe ^^

Đã gửi 12-12-2013 - 22:24

cho a,b,c là các số thực dương. Tìm GTLN của biểu thức:

$H=\frac{a(b+c)}{(b+c)^{2}+a^{2}}+\frac{b(c+a)}{(c+a)^{2}+b^{2}}+\frac{c(a+b)}{(a+b)^{2}+c^{2}}$

 


sống là cho đâu chỉ nhận riêng mình  :icon6:


#2 kfcchicken98

kfcchicken98

    Thượng sĩ

  • Thành viên
  • 259 Bài viết
  • Giới tính:Nam

Đã gửi 13-12-2013 - 05:28

chuẩn hóa $a+b+c=1$

bđt tuong đương $\frac{a(1-a)}{(1-a)^{2}+a^{2}}+\frac{b(1-b)}{(1-b)^{2}+b^{2}}+\frac{c(1-c)}{(1-c)^{2}+c^{2}}$

có $\frac{a(1-a)}{(1-a)^{2}+a^{2}}=\frac{a(1-a)}{2a^{2}-2a+1}=\frac{a(1-a)}{1-2a(1-a)}\leq \frac{a(1-a)}{1-\frac{(a+1)^{2}}{4}}=\frac{a(1-a)}{(1-\frac{a+1}{2})(1+\frac{a+1}{2})}=\frac{4a(1-a)}{(1-a)(a+3)}=\frac{4a}{a+3}=4-\frac{12}{a+3}$

suy ra $H\leq 12-12(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3})\leq 12-12\frac{9}{10}=\frac{6}{5}$

suy ra max= $\frac{6}{5}$



#3 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 14-12-2013 - 21:39

Chuẩn hóa $a+b+c=3$.Ta sẽ CM :$H\leq \frac{6}{5}$

BĐT $< = > \sum \frac{a(3-a)}{a^2+(3-a)^2}\leq \frac{6}{5}< = > \sum \frac{1}{2a^2-6a+9}\leq \frac{3}{5}$

Mà $\sum \frac{1}{2a^2-6a+9}\leq \sum \frac{2a+3}{25}< = > (a-1)^2(a+2)\geq 0$(đúng)

$= > \sum \frac{1}{2a^2-6a+9}\leq \frac{2\sum a+9}{25}=\frac{2.3+9}{25}=\frac{3}{5}$



#4 thanhelf96

thanhelf96

    Trung sĩ

  • Thành viên
  • 155 Bài viết
  • Giới tính:Nữ
  • Sở thích:nhiều woa đếm k xuể hehe ^^

Đã gửi 14-12-2013 - 22:30

chuẩn hóa $a+b+c=1$

bđt tuong đương $\frac{a(1-a)}{(1-a)^{2}+a^{2}}+\frac{b(1-b)}{(1-b)^{2}+b^{2}}+\frac{c(1-c)}{(1-c)^{2}+c^{2}}$

có $\frac{a(1-a)}{(1-a)^{2}+a^{2}}=\frac{a(1-a)}{2a^{2}-2a+1}=\frac{a(1-a)}{1-2a(1-a)}\leq \frac{a(1-a)}{1-\frac{(a+1)^{2}}{4}}=\frac{a(1-a)}{(1-\frac{a+1}{2})(1+\frac{a+1}{2})}=\frac{4a(1-a)}{(1-a)(a+3)}=\frac{4a}{a+3}=4-\frac{12}{a+3}$

suy ra $H\leq 12-12(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3})\leq 12-12\frac{9}{10}=\frac{6}{5}$

suy ra max= $\frac{6}{5}$

bạn ơi! cho mình hỏi chuẩn hóa nghĩa là thê nào với? làm sao để có được kết quả a+b+c=1


sống là cho đâu chỉ nhận riêng mình  :icon6:


#5 thanhelf96

thanhelf96

    Trung sĩ

  • Thành viên
  • 155 Bài viết
  • Giới tính:Nữ
  • Sở thích:nhiều woa đếm k xuể hehe ^^

Đã gửi 15-12-2013 - 23:29

Chuẩn hóa $a+b+c=3$.Ta sẽ CM :$H\leq \frac{6}{5}$

BĐT $< = > \sum \frac{a(3-a)}{a^2+(3-a)^2}\leq \frac{6}{5}< = > \sum \frac{1}{2a^2-6a+9}\leq \frac{3}{5}$

Mà $\sum \frac{1}{2a^2-6a+9}\leq \sum \frac{2a+3}{25}< = > (a-1)^2(a+2)\geq 0$(đúng)

$= > \sum \frac{1}{2a^2-6a+9}\leq \frac{2\sum a+9}{25}=\frac{2.3+9}{25}=\frac{3}{5}$

bạn ơi! cho mình hỏi làm thế nào để có kết quả chuẩn hóa bằng 3 vậy bạn?


sống là cho đâu chỉ nhận riêng mình  :icon6:





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh