Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

tính lũy thừa ma trận


  • Please log in to reply
Chủ đề này có 7 trả lời

#1 waiwjnkti3n

waiwjnkti3n

    Binh nhất

  • Thành viên
  • 22 Bài viết

Đã gửi 27-12-2013 - 17:46

tính

$\begin{pmatrix} -3 & 4 \\ 0& -3 \end{pmatrix}^{2012}$

 

bình thường tính lũy thừa e biết mỗi chéo hóa rồi lũy thừa lên

bài này có mỗi 1 giá trị riêng e k biết làm thế nào cả

cho e lời giải dạng này với



#2 KoBietDatTenSaoChoHot

KoBietDatTenSaoChoHot

    Trung sĩ

  • Thành viên
  • 143 Bài viết
  • Giới tính:Nam
  • Đến từ:nữa vòng trái đất
  • Sở thích:học toán, đi lang thang, ăn tối với một người bạn...

Đã gửi 28-12-2013 - 02:17

Mình chưa giải, nhưng biết đâu có 1 trị riêng mà ứng với nó có đến 2 vector riêng thì sao?
Giá như ta thích toán sớm hơn một chút...

#3 waiwjnkti3n

waiwjnkti3n

    Binh nhất

  • Thành viên
  • 22 Bài viết

Đã gửi 28-12-2013 - 08:06

Mình chưa giải, nhưng biết đâu có 1 trị riêng mà ứng với nó có đến 2 vector riêng

 

 

(-3-x)^2 = 0 

=> x = -3

0    4    0

0    0    0

x2 = 0

x1 tùy ý

vecto riêng cơ sở (a,0) 

hết rồi ......

làm sao mà chéo hóa đc



#4 KoBietDatTenSaoChoHot

KoBietDatTenSaoChoHot

    Trung sĩ

  • Thành viên
  • 143 Bài viết
  • Giới tính:Nam
  • Đến từ:nữa vòng trái đất
  • Sở thích:học toán, đi lang thang, ăn tối với một người bạn...

Đã gửi 28-12-2013 - 08:56

Vậy thì tính đường khác chứ có gì mà lo :). Chéo hoá chỉ là một cách. Lấy ví dụ một cách này nhé:

 

$A=\begin{pmatrix} -3 & 4 \\ 0 & -3 \end{pmatrix}$

 
 $A=-3\begin{pmatrix} 1 & \frac{-4}{3} \\ 0 & 1  \end{pmatrix}=-3\begin{pmatrix} 1 & a \\ 0 & 1  \end{pmatrix}$, với $a=\frac{-4}{3}$.
 
Đặt $B=\begin{pmatrix} 1 & a \\ 0 & 1  \end{pmatrix}$

 

Ta có $A^n=3^nB^n$
 
Dùng quy nạp ta có thể dễ dàng tính được $B^n=\begin{pmatrix} 1 & na \\  0 &1 \end{pmatrix}$
 
Từ công thức tổng quát đó, bỏ n=2012 vào là ra kết quả

Bài viết đã được chỉnh sửa nội dung bởi KoBietDatTenSaoChoHot: 28-12-2013 - 09:04

Giá như ta thích toán sớm hơn một chút...

#5 waiwjnkti3n

waiwjnkti3n

    Binh nhất

  • Thành viên
  • 22 Bài viết

Đã gửi 28-12-2013 - 10:03

 

Vậy thì tính đường khác chứ có gì mà lo :). Chéo hoá chỉ là một cách. Lấy ví dụ một cách này nhé:

 

$A=\begin{pmatrix} -3 & 4 \\ 0 & -3 \end{pmatrix}$

 
 $A=-3\begin{pmatrix} 1 & \frac{-4}{3} \\ 0 & 1  \end{pmatrix}=-3\begin{pmatrix} 1 & a \\ 0 & 1  \end{pmatrix}$, với $a=\frac{-4}{3}$.
 
Đặt $B=\begin{pmatrix} 1 & a \\ 0 & 1  \end{pmatrix}$

 

Ta có $A^n=3^nB^n$
 
Dùng quy nạp ta có thể dễ dàng tính được $B^n=\begin{pmatrix} 1 & na \\  0 &1 \end{pmatrix}$
 
Từ công thức tổng quát đó, bỏ n=2012 vào là ra kết quả

 

tks

t vừa làm theo cayley- hamilton

cũng ra giống bạn

tại đây đặc biệt nên làm như bạn là rất hay ^^

còn tổng quát phải theo cayley 



#6 KoBietDatTenSaoChoHot

KoBietDatTenSaoChoHot

    Trung sĩ

  • Thành viên
  • 143 Bài viết
  • Giới tính:Nam
  • Đến từ:nữa vòng trái đất
  • Sở thích:học toán, đi lang thang, ăn tối với một người bạn...

Đã gửi 28-12-2013 - 12:27

tks
t vừa làm theo cayley- hamilton
cũng ra giống bạn
tại đây đặc biệt nên làm như bạn là rất hay ^^
còn tổng quát phải theo cayley

Ấy, viết cách Cayley-Hamilton lên mình coi với. Mình chưa học cái đó :(. Mà cậu học trường nào, khoa nào thế? Gần thi học kỳ rồi à?

Bài viết đã được chỉnh sửa nội dung bởi KoBietDatTenSaoChoHot: 28-12-2013 - 12:29

Giá như ta thích toán sớm hơn một chút...

#7 waiwjnkti3n

waiwjnkti3n

    Binh nhất

  • Thành viên
  • 22 Bài viết

Đã gửi 28-12-2013 - 14:27

Ấy, viết cách Cayley-Hamilton lên mình coi với. Mình chưa học cái đó :(. Mà cậu học trường nào, khoa nào thế? Gần thi học kỳ rồi à?

 

bạn lên google mà đọc cho nó full

lên gõ " phuong phap tinh luy thua ma tran"

click cái ứng dụng định lý cayley nha ^^



#8 KoBietDatTenSaoChoHot

KoBietDatTenSaoChoHot

    Trung sĩ

  • Thành viên
  • 143 Bài viết
  • Giới tính:Nam
  • Đến từ:nữa vòng trái đất
  • Sở thích:học toán, đi lang thang, ăn tối với một người bạn...

Đã gửi 28-12-2013 - 15:03

bạn lên google mà đọc cho nó full
lên gõ " phuong phap tinh luy thua ma tran"
click cái ứng dụng định lý cayley nha ^^


Okay, thấy rồi.

Bài viết đã được chỉnh sửa nội dung bởi KoBietDatTenSaoChoHot: 28-12-2013 - 17:54

Giá như ta thích toán sớm hơn một chút...




5 người đang xem chủ đề

0 thành viên, 5 khách, 0 thành viên ẩn danh