Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

CMR:$\sum \frac{a^{2}}{a+\sqrt{(a+b)(a+c)}}\leqslant 1$


  • Please log in to reply
Chủ đề này có 6 trả lời

#1 buitudong1998

buitudong1998

    Trung úy

  • Thành viên
  • 873 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Vĩnh Phúc
  • Sở thích:kungfu

Đã gửi 19-01-2014 - 07:21

Cho a, b, c dương thỏa mãn: $3+4(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})=5(a+b+c)$. CMR:$\sum \frac{a^{2}}{a+\sqrt{(a+b)(a+c)}}\leqslant 1$


Đứng dậy và bước tiếp

#2 lahantaithe99

lahantaithe99

    Trung úy

  • Thành viên
  • 883 Bài viết
  • Giới tính:Nữ

Đã gửi 19-01-2014 - 07:53

Cho a, b, c dương thỏa mãn: $3+4(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})=5(a+b+c)$. CMR:$\sum \frac{a^{2}}{a+\sqrt{(a+b)(a+c)}}\leqslant 1$

Hướng giải của mình là như thế này, không biết có giúp ích gì không.

Từ điều kiện đề bài suy ra $a+b+c\leq 3$

Áp dụng bất đẳng thức Bunhiacopxki có

$\sqrt{(a+b)(a+c)}\geq \sqrt{ab}+\sqrt{ac}$

Do đó

$\sum \frac{a^2}{a+\sqrt{(a+b)(a+c)}}\leq \sum \frac{a^2}{\sqrt{a}(\sqrt{a}+\sqrt{b}+\sqrt{c})}=\frac{\sqrt{a^3}+\sqrt{b^3}+\sqrt{c^3}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}$

Liệu có chứng minh được  $\frac{\sqrt{a^3}+\sqrt{b^3}+\sqrt{c^3}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\leq 1$ dựa vào $a+b+c\leq 3$ không nhỉ????



#3 lahantaithe99

lahantaithe99

    Trung úy

  • Thành viên
  • 883 Bài viết
  • Giới tính:Nữ

Đã gửi 19-01-2014 - 07:54

Cho a, b, c dương thỏa mãn: $3+4(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})=5(a+b+c)$. CMR:$\sum \frac{a^{2}}{a+\sqrt{(a+b)(a+c)}}\leqslant 1$

Sorry.Không biết bấm thế nào mà nó lại copy ra nhiều bài thế nhỉ


Bài viết đã được chỉnh sửa nội dung bởi lahantaithe99: 19-01-2014 - 07:58


#4 lahantaithe99

lahantaithe99

    Trung úy

  • Thành viên
  • 883 Bài viết
  • Giới tính:Nữ

Đã gửi 19-01-2014 - 07:54

 


Bài viết đã được chỉnh sửa nội dung bởi lahantaithe99: 19-01-2014 - 07:59


#5 nguyenquocthang98

nguyenquocthang98

    Lính mới

  • Thành viên
  • 3 Bài viết

Đã gửi 19-01-2014 - 08:15

Cho a, b, c dương thỏa mãn: $3+4(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})=5(a+b+c)$. CMR:$\sum \frac{a^{2}}{a+\sqrt{(a+b)(a+c)}}\leqslant 1$

 

 

Hướng giải của mình là như thế này, không biết có giúp ích gì không.

Từ điều kiện đề bài suy ra $a+b+c\leq 3$

Áp dụng bất đẳng thức Bunhiacopxki có

$\sqrt{(a+b)(a+c)}\geq \sqrt{ab}+\sqrt{ac}$

Do đó

$\sum \frac{a^2}{a+\sqrt{(a+b)(a+c)}}\leq \sum \frac{a^2}{\sqrt{a}(\sqrt{a}+\sqrt{b}+\sqrt{c})}=\frac{\sqrt{a^3}+\sqrt{b^3}+\sqrt{c^3}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}$

Liệu có chứng minh được  $\frac{\sqrt{a^3}+\sqrt{b^3}+\sqrt{c^3}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\leq 1$ dựa vào $a+b+c\leq 3$ không nhỉ????

 

 

Sorry.Không biết bấm thế nào mà nó lại copy ra nhiều bài thế nhỉ

 

 

 

 

 

 

 

chắc là: $\sum \frac{a}{a+\sqrt{(a+b)(a+c)}}$ chứ ko phải ;là:'

$\sum \frac{a^2}{a+\sqrt{(a+b)(a+c)}}$

nếu thê này thì BĐT sai ở $x=\frac{1}{2};y= \frac{1}{4};z=\frac{9}{4}$

sai đề.

nếu là thế này $\sum \frac{a}{a+\sqrt{(a+b)(a+c)}}$

 

  thif chỉ cần làm như

 

 

lahantaithe99

 

là OK


Bài viết đã được chỉnh sửa nội dung bởi nguyenquocthang98: 19-01-2014 - 08:16


#6 lahantaithe99

lahantaithe99

    Trung úy

  • Thành viên
  • 883 Bài viết
  • Giới tính:Nữ

Đã gửi 19-01-2014 - 08:18

Nhưng nếu như bạn nói thì đâu còn cần giả thiết ở trên nữa



#7 buitudong1998

buitudong1998

    Trung úy

  • Thành viên
  • 873 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Vĩnh Phúc
  • Sở thích:kungfu

Đã gửi 19-01-2014 - 17:47

chắc là: $\sum \frac{a}{a+\sqrt{(a+b)(a+c)}}$ chứ ko phải ;là:'

$\sum \frac{a^2}{a+\sqrt{(a+b)(a+c)}}$

nếu thê này thì BĐT sai ở $x=\frac{1}{2};y= \frac{1}{4};z=\frac{9}{4}$

sai đề.

nếu là thế này $\sum \frac{a}{a+\sqrt{(a+b)(a+c)}}$

 

  thif chỉ cần làm như

 

 

lahantaithe99

 

là OK

Đề chắc chắn đúng bạn ơi!


Đứng dậy và bước tiếp




2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh