Đến nội dung

Hình ảnh

A mathematician’s apology, by G. H. Hardy

- - - - -

  • Please log in to reply
Chủ đề này có 31 trả lời

#21
ngocson52

ngocson52

    Kẻ độc hành

  • Founder
  • 859 Bài viết
19

I MUST return to my Oxford apology, and examine a little more carefully some of the points which I postponed in § 6. It will be obvious by now that I am interested in mathematics only as a creative art. But here are other questions to be considered, and in particular that of the ‘utility’ (or uselessness) of mathematics, about which there is much confusion of thought. We must also consider whether mathematics is really quite so ‘harmless’ as I took for granted in my Oxford lecture.

A science or an art may be said to be ‘useful’ if its development increases, even indirectly, the material well-being and comfort of men, if it promotes happiness ,using that word in a crude and commonplace way. Thus medicine and physiology are useful because they relieve suffering, and engineering is useful because it helps us to build houses and bridges, and so to raise the standard of life (engineering, of course, does harm as well, but that is not the question at the moment), Now some mathematics is certainly useful in this way; the engineers could not do their job without a fair working knowledge of mathematics, and mathematics is beginning to find applications even in physiology. So here we have a possible ground for a defence of mathematics; it may not be the best, or even a particularly strong defence, but it is one which we must examine. The ‘nobler’ uses of mathematics, if such they be, the uses which hit shares with all creative art, will be irrelevant to our examination. Mathematics may, like poetry or music, ‘promote and sustain a lofty habit of mind’, and so increase the happiness of mathematicians and even of other people; but to defend it on that ground would be merely to elaborate what I have said already. What we have to consider now is the ‘crude’ utility of mathematics.

oOo
Sống trong đời sống cần có một túi tiền.
Để làm gì em biết không?
Để gái nó theo, để gái nó theo... :D

#22
ngocson52

ngocson52

    Kẻ độc hành

  • Founder
  • 859 Bài viết
20

ALL this may seem very obvious, but even here there is often a good deal of confusion, since the most ‘useful’ subjects are quite commonly just those which it is most useless for most of us to learn. It is useful to have an adequate supply of physiologists and engineers but physiology and engineering are not useful studies for ordinary men (though their study may of course be defended on other grounds). For my own part I have never once found myself on a position where such scientific knowledge as I possess, outside pure mathematics, has brought me the slightest advantage.

It is indeed rather astonishing how little practical value scientific knowledge has for ordinary men, how dull and commonplace such of it as has value is, and how its value seems almost to vary inversely to its reputed utility. It is useful to be tolerably quick at common arithmetic (and that, of course, is pure mathematics). It is useful to know a little French or German, a little history and geography, perhaps even a little economics. But a little chemistry, physics, or physiology has no value at all in ordinary life. We know that the gas will burn without knowing its constitution; when our cars break down we take them to a garage; when our stomach is out of order, we go to a doctor or a drugstore. We live either by rule of thumb or on other people’s professional knowledge.

However, this is a side issue, a matter of pedagogy, interesting only to schoolmasters who have to advise parents clamouring for a ‘useful’ education for their sons. Of course, we do not mean, when we say that physiology is useful, that most people ought to stud physiology, but that the development of physiology by a handful of experts will increase the comfort of the majority. The questions which are important for us now are, how far mathematics can claim this sort of utility, what kinds of mathematics can make the strongest claims, and how far the intensive study of mathematics, as it is understood by mathematicians, can be justified on this ground alone.

oOo
Sống trong đời sống cần có một túi tiền.
Để làm gì em biết không?
Để gái nó theo, để gái nó theo... :D

#23
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
21

IT will probably be plain by now to what conclusions I am coming; so I will state them at once dogmatically and then elaborate them a little. It is undeniable that a good deal of elementary mathematics – and I use the word ‘elementary’ in the sense in which professional mathematicians use it, in which it includes, for example, a fair working knowledge of the differential and integral calculus – has considerable practical utility. These parts of mathematics are, on the whole, rather dull; they are just the parts which have least aesthetic value. The ‘real’ mathematics of the ‘real’ mathematicians, the mathematics of Fermat and Euler and Gauss and Abel and Riemann, is almost wholly ‘useless’ (and this is as true of ‘applied’ as of ‘pure’ mathematics). It is not possible to justify the life of any genuine professional mathematician on the ground of the utility’ of his work.

But here I must deal with a misconception. It is sometimes suggested that pure mathematicians glory in the uselessness of their work *, and make it a boast that it has no practical applications. The imputation is usually based on an incautious saying attributed to Gauss, to the effect that, if mathematics is the queen of the sciences, then the theory of numbers is, because of its supreme uselessness, the queen of mathematics – I have never been able to find an exact quotation. I am sure that Gauss’s saying (if indeed it be his) has been rather crudely misinterpreted. If the theory of numbers could be employed for any practical and obviously honourable purpose, if it could be turned directly to the furtherance of human happiness or the relief of human suffering, as physiology and even chemistry can, then surely neither Gauss nor any other mathematician would have been so foolish as to decry or regret such applications. But science works for evil as well as for good (and particularly, of course, in time of war); and both Gauss and lesser mathematicians may be justified in rejoicing that there is one science at any rate, and that their own, whose very remoteness from ordinary human activities should keep it gentle and clean.

* I have been accused of taking this view myself. I once said that ‘a science is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life’, and this sentence, written in 1915, has been quoted (for or against me) several times. It was of course a conscious rhetorical flourish, though one perhaps excusable at the time when it was written.

oOo

#24
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
22

THERE is another misconception against which we must guard. It is quite natural to suppose that there is a great difference in utility between ‘pure’ and ‘applied’ mathematics. This is a delusion: there is a sharp distinction between the two kinds of mathematics, which I will explain in a moment, but it hardly affects their utility.

How do pure and applied mathematics differ from one another? This is a question which can be answered definitely and about which there is general agreement among mathematicians. There will be nothing in the least unorthodox about my answer, but it needs a little more preface.

My next two sections will have a mildly philosophical flavour. The philosophy will not cut deep, or be in any way vital to my main theses; but I shall use words which are used very frequently with definite philosophical implications, and a reader might well become confused if I did not explain how I shall use them.

I have often used the adjective ‘real’, and as we use it commonly in conversation. I have spoken of ‘real mathematics’ and ‘real mathematicians’, as I might have spoken of ‘real poetry’ or ‘ real poets’, and I shall continue to do so. But I shall also use the word ‘reality’, and with two different connotations.

In the first place, I shall speak of ‘physical reality’, and here again I shall be using the word in the ordinary sense. Bu physical reality I mean the material world, the world of day and night, earthquakes and eclipses, the world which physical science tries to describe.

I hardly suppose that, up to this point, any reader is likely to find trouble with my language, but now I am near to more difficult ground. For me, and I suppose for most mathematicians, there is another reality, which I will call ‘mathematical reality’; and there is no sort of agreement about the nature of mathematical reality among either mathematicians or philosophers. Some hold that it is ‘mental’ and that in some sense we construct it, others that it is outside and independent of us. A man who could give a convincing account of mathematical reality would have solved very many of the most difficult problems of metaphysics. If he could include physical reality in his account, he would have solved them all.

I should not wish to argue any of these questions here even if I were competent to do so, but I will state my own position dogmatically in order to avoid minor misapprehensions. I believe that mathematical reality lies outside us, that our function is to discover or observe it, and that the theorems which we prove, and which we describe grandiloquently as our ‘creations’, are simply our notes of our observations. This view has been held, in one form or another, by many philosophers of high reputation from Plato onwards, and I shall use the language which is natural to a man who holds it. A reader who does not like the philosophy can alter the language: it will make very little difference to my conclusions.

oOo

#25
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
23

THE contrast between pure and applied mathematics stands out most clearly, perhaps, in geometry. There is the science of pure geometry *, in which there are many geometries, projective geometry, Euclidean geometry, non-Euclidean geometry, and so forth. Each of these geometries is a model, a pattern of ideas, and is to be judged by the interest and beauty of its particular pattern. It is a map or picture, the joint product of many hands, a partial and imperfect copy (yet exact so far as it extends) of a section of mathematical reality. But the point which is important to us now is this, that there is one thing at any rate of which pure geometries are not pictures, and that is the spatio-temporal reality of the physical world. It is obvious, surely, that they cannot be, since earthquakes and eclipses are not mathematical concepts.

This may sound a little paradoxical to an outsider, but it is a truism to a geometer; and I may perhaps be able to make it clearer by an illustration. Let us suppose that I am giving a lecture on some system of geometry, such as ordinary Euclidean geometry, and that I draw figures on the blackboard to stimulate the imagination of my audience, rough drawings of straight lines or circles or ellipses. It is plain, first, that the truth of the theorems which I prove is in no way affected by the quality of my drawings. Their function is merely to bring home my meaning to my hearers, and, if I can do that , there would be no gain in having them redrawn by the most skilful draughtsman. They are pedagogical illustrations, not part of the real subject-matter of the lecture.

Now I let us go stage further. The room in which I am lecturing is part of the physical world, and has itself a certain pattern. The study of that pattern, and of the general pattern of physical reality, is a science in itself, which we may call ‘physical geometry’. Suppose now that a violent dynamo, or a massive gravitating body, is introduced into the room. Then the physicists tell us that the geometry of the room is changed, its whole physical pattern slightly but definitely distorted. Do the theorems which I have proved become false? Surely it would be nonsense to suppose that the proofs of them which I have given are affected in any way. It would be likely supposing that a play of Shakespeare is changed when a reader spills his tea over a page. The play is independent of the pages on which it is printed, and ‘pure geometries’ are independent of lecture rooms, or of any other detail of the physical world.

This is the point of view of a pure mathematician. Applied mathematicians, mathematical physicists, naturally take a different view, since they are preoccupied with the physical world itself, which also has its structure or pattern. We cannot describe this pattern exactly, as we can that of a pure geometry, but we can say something significant about it, We cab describe sometimes fairly accurately, sometimes very roughly, the relations which hold between some of its constituents, and compare them with the exact relations holding between constituents of some system of pure geometry. We may be able to trace a certain resemblance between the two sets of relations, and then the pure geometry will become interesting t physicists; it will give us, to that extent, a map which ‘fits the facts’ of the physical world. The geometer offers to the physicist a whole set of maps from which to choose. One map, perhaps, will fit the facts better than others, and then the geometry which provides that particular map will be the geometry most important for applied mathematics. I may ad that even a pure mathematician ay find his appreciation of this geometry quickened, since there is no mathematician so pure that he feels no interest at all in the physical world; but, in so far as he succumbs to this temptation, he will be abandoning his purely mathematical position.

* We must of course, for the purposes of this discussion, count as pure geometry what mathematicians call ‘analytical’ geometry.

oOo

#26
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
24

THERE is another remark which suggests itself here and which physicists may find paradoxical, though the paradox will probably seem a good deal less tha nit did eighteen years ago. I will express it in much the same words which I used in 1922 in an address to Section A of the British Association. My audience then was composed almost entirely of physicists, and I may have spoken a little provocatively on that account; but I would still stand by the substance of what I said.

I began by saying that there is probably less difference between the positions of a mathematician and of a physicist than is generally supposed, and that the most important seems to me to be this, that the mathematician is in much more direct contact with reality. This may seem a paradox, since it is the physicist who deals with the subject-matter usually described as ‘real’; but a very little reflection is enough to show that the physicist’s reality, whatever it may be, has few or none of the attributes which common sense ascribes instinctively to reality. A chair may be a collection of whirling electrons, or an idea in the mind of God: each of these accounts of it may have its merits, but neither conforms at all closely to the suggestions of common sense.

I went on to say that neither physicists nor philosophers have ever given any convincing account of what ‘physical reality’ is, or of how the physicist passes, from the confused mass of fact or sensation with which he starts, to the construction of the objects which he calls ‘real’. Thus we cannot be said to know what the subject-matter of physics is; but this need not prevent us from understanding roughly what a physicist is trying to do. It is plain that he is trying to correlate the incoherent body of crude fact confronting hum with some definite and orderly scheme of abstract relations, the kind of scheme which he can borrow only from mathematics.

A mathematician, on the other hand, is working with his own mathematical reality. Of this reality, as I explained in § 22, I take a ‘realistic’ and not an ‘idealistic’ view. At any rate (and this was my main point) this realistic view is much more plausible of mathematical than of physical reality, because mathematical objects are so much more what they seem. A chair or a star is not in the least like what it seems to be; the more we think of it, the fuzzier its outlines become in the haze of sensation which surrounds it; but ‘2’ or ‘317’ has nothing to do with sensation, and its properties stand out the more clearly the more closely we scrutinize it. It may be that modern physics fits best into some framework of idealistic philosophy – I do not believe it, but there are eminent physicists who say so. Pure mathematics, on the other hand, seems to me a rock on which all idealism founders: 317 is a prime, not because we think so, or because our minds are shaped in one way rather than another, but because it is so, because mathematical reality is built that way.

oOo

#27
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
25

THESE distinctions between pure and applied mathematics are important in themselves, but they have very little bearing on our discussion of the ‘usefulness’ of mathematics. I spoke in § 21 of the ‘real’ mathematics of Fermat and other great mathematicians, the mathematics which has permanent aesthetic literature, continue to cause intense emotional satisfaction to thousands of people after thousands of years. These men were all primarily pure mathematicians (though the distinction was naturally a good deal less sharp in their days than it is now); but I was not thinking only of pure mathematics. I count Maxwell and Einstein, Eddington and Dirac, among ‘real’ mathematicians. The great modern achievements of applied mathematics have been in relativity and quantum mechanics, and these subjects are, at present at any rate, almost as ‘useless’ as the theory of numbers. It is the dull and elementary parts of applied mathematics, as it is the dull and elementary parts of pure mathematics, that work for good or ill. Time may change all this. No one foresaw the applications of matrices and groups and other purely mathematical theories to modern physics, and it may be that some of the ‘highbrow’ applied mathematics will become ‘useful’ in as unexpected a way; but the evidence so far this points to the conclusion that, in one subject as in the other, it is what is commonplace and dull that counts for practical life.

I can remember Eddington giving a happy example of the unattractiveness of ‘useful’ science. The British Association held a meeting in Leeds, and it was thought that the members might like to hear something of the applications of science to the ‘heavy woolen’ industry. But the lectures and demonstrations arranged for this purpose were rather a fiasco. It appeared that the members (whether citizens of Leeds or not) wanted to be entertained ,and that ‘heavy wool’ is not at all an entertaining subject. So the attendance at these lectures was very disappointing; but those who lectured on the excavations at Knossos, or on relativity, or on the theory of prime numbers, were delighted by the audiences that they drew.

oOo

#28
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
26

WHAT parts of mathematics are useful?

First, the bulk of school mathematics, arithmetic, elementary algebra, elementary Euclidean geometry, elementary differential and integral calculus. We must except a certain amount of what is taught to ‘spe"từ cấm"ts’ such as projective geometry. In applied mathematics, the elements of mechanics (electricity, as taught in schools, must be classified as physics).

Next, a fair proportion of university mathematics is also useful, that part of it which is really a development of school mathematics with a more finished technique, and a certain amount of the more physical subjects such as electricity and hydromechanics. We must also remember that a reverse of knowledge is always an advantage, and that the most practical of mathematicians may be seriously handicapped if his knowledge is the bare minimum which is essential to hum; and for this reason we must add a little under every heading. But our general conclusion must be that such mathematics is useful as is wanted by a superior engineer or a moderate physicist; and that is roughly the same thing to say, such mathematics as has no particular aesthetic merit. Euclidean geometry, for example, is useful in so far s it is dull – we do not want the axiomatics of parallels, or the theory of proportion, or the construction of the regular pentagon.

One rather curious conclusion emerges, that pure mathematics is on the whole distinctly more useful than applied. A pure mathematician seems to have the advantage on the practical as well as on the aesthetic side. For what is useful above all is the technique, and mathematical technique is taught mainly through pure mathematics.

I hope that I need not say that I am not trying to decry mathematical physics, a splendid subject with tremendous problems where the finest imaginations have run riot. But is not the position of an ordinary applied mathematician in some ways a little pathetic? If he wants to be useful, he must work in a humdrum way, and he cannot give full play to his fancy even when he wishes to rise the heights. ‘Imaginary’ universes are so much more beautiful than this stupidly constructed ‘real’ one; and most of the finest products of an applied mathematician’s fancy must be rejected, as soon as they have been created, for the brutal but sufficient reason that they do not fit the facts.

The general conclusion, surely, stands out plainly enough. If useful knowledge is, as we agreed provisionally to say, knowledge which is likely, now or in the comparatively near future, to contribute to the material comfort of mankind, so that mere intellectual satisfaction is irrelevant, then the bulk of higher mathematics is useless. Modern geometry and algebra, the theory of numbers, the theory of aggregates and functions, relativity, quantum mechanics – no one of them stands the test much better than another, and there is no real mathematician whose life can be justified on this ground. If this be the test, then Abel, Riemann, and Poincaré wasted their lives their contribution to human comfort was negligible, and the world would have been as happy a place without them.

oOo

#29
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
27

IT may be objected that my concept of ‘utility’ has been too narrow, that I have defined it in terms of ‘happiness’ or ‘comfort’ only, and have ignored the general ‘social’ effects of mathematics on which recent writers, with very different sympathies, have laid so much stress. Thus Whitehead (who has been a mathematician) speaks of ‘the tremendous effect of mathematical knowledge on the lives of men, on their daily avocations, on the organization of society’; and Hogben (who is as unsympathetic to what I and other mathematicians call mathematics as Whitehead is sympathetic) says that ‘without a knowledge of mathematics, the grammar of size and order, we cannot plan the rational society in which there will be leisure for all and poverty for none’ (and much more to the same effect).

I cannot really believe that all this eloquence will do much to comfort mathematicians. The language of both writers is violently exaggerated, and both of them ignore very obvious distinctions. This is very natural in Hogben’s case, since he is admittedly not a mathematician; he means by ‘mathematics’ the mathematics which he can understand, and which I have called the ‘school’ mathematics. This mathematics has many uses, which I have admitted, which we can call ‘social’ if we please, and which Hogben enforces with many interesting appeals to the history of mathematical discovery. It is this which gives his book its merit, since it enables him to make plain, to many readers who never have been and never will be mathematicians, that there is more in mathematics than they thought. But he has hardly any understanding of ‘real’ mathematics (as any one who reads what he says about Pythagoras’s theorem, or about Euclid and Einstein, can tell at once), and still less sympathy with it (as he spares no pains to show). ‘Real’ mathematics is to him merely an object of contemptuous pity.

It is not lack of understanding or of sympathy which is the trouble in Whitehead’s case; but he forgers, in his enthusiasm, distinctions with which he is quite familiar. The mathematics which has this ‘tremendous effect’ on the ‘daily avocations of men’ and on ‘the organization of society’ is not the Whitehead but the Hogben mathematics. The mathematics which can be used ‘for ordinary purposes by ordinary men’ is negligible, and that which can be used by economists or sociologists hardly rises to ‘scholarship standard’. The Whitehead mathematics may affect astronomy or physics profoundly, philosophy very appreciably – high thinking of one kind is always likely to affect high thinking of another – but it has extremely little effect on anything else. It ‘tremendous effects’ have been, not on men generally, but on men like Whitehead himself.

oOo

#30
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
28

THERE are then two mathematics. There is the real mathematics of the real mathematicians, and there is what I will call the ‘trivial’ mathematics, for want of a better word. The trivial mathematics may be justified by arguments which would appeal to Hogben, or other writers of his school, but there is no such defence for the real mathematics, which must be justified as art if it can be justified at all. There is nothing in the least paradoxical or unusual in this view, which is that held commonly by mathematicians.

We have still one more question to consider. We have concluded that the trivial mathematics is, on the whole, is not; that the trivial mathematics does, and the real mathematics does not, ‘do good’ in a certain sense; but we have still to ask whether either sort of mathematics does harm. It would be paradoxical to suggest that mathematics of any sort does much harm in time of peace, so that we are driven to the consideration of the effects of mathematics on war. It is very difficult to argue such questions at all dispassionately now, and I would have preferred to avoid them; but some sort of discussion seems inevitable. Fortunately, it need not be a long one.

There is one comforting conclusion which is easy for a real mathematician. Real mathematics has no effects on war. No one has yet discovered any warlike purpose to be served by the theory of numbers or relativity, and it seems very unlikely that anyone will do so for many years. It is true that there are branches of applied mathematics, such as ballistics and aerodynamics, which have been developed deliberately for war and demand a quite elaborate technique: it is perhaps hard to call them ‘trivial’, but none of them has any claim to rank as ‘real’. They are indeed repulsively ugly and intolerably dull; even Littlewood could not make ballistics respectable, and if he could not who can? So a real mathematician has his conscience clear; there is nothing to be set against any value his work may gave; mathematics is, as I said at Oxford, a ‘harmless and innocent’ occupation.

The trivial mathematics, on the other hand, has many applications in war. The gunnery experts and aeroplane designers, for example, could not do their work without it. And the general effect of these applications is plain: mathematics facilitates (if not so obviously as physics or chemistry) modern, scientific, ‘total’ war.

It is not so clear as it might seem that this is to be regretted, since there are two sharply contrasted views about modern scientific war. The first and the most obvious is that the effect of science on war is merely to magnify its horror, both by increasing the sufferings of the minority who have to fight and by extending them to other classes. This is the most natural and orthodox view. But there is a very different view which seems also quite tenable, and which has been stated with great force by Haldane in Callinicus *. It can be maintained that modern warfare is less horrible than the warfare of pre-scientific times; that bombs are probably more merciful than bayonets; that lachrymatory gas and mustard gas are perhaps the most humane weapons yet devised by military science; and that the orthodox view rests solely on loose-thinking sentimentalism *. It may also be urged (though this was not one of Haldane’s theses) that the equalization of risks which science was expected to bring would be in the long run salutary; that a civilian’s life is not worth more than a soldier’s, nor a woman’s than a man’s; that anything is better than the concentration of savagery on one particular class; and that, in short, the sooner war comes ‘all out’ the better.

I do not know which of these views is nearer to the truth. It is an urgent and a moving question, but I need not argue it here. It concerns only the ‘trivial’ mathematics, which it would be Hogben’s business to defend rather than mine. The case for his mathematics may be rather more than a little soiled; the case for mine is unaffected.

Indeed, there is more to be said, since there is one purpose at any rate which the real mathematics may serve in war. When the world is mad, a mathematician may find in mathematics an incomparable anodyne. For mathematics is, of all the arts and sciences, the most austere and the most remote, and a mathematician should be of all men the one who can most easily take refuge where, as Bertrand Russell says, ‘one at least of our nobler impulses can best escape from the dreary exile of the actual world’. It is a pity that it should be necessary to make one very serious reservation – he must not be too old. Mathematics is not a contemplative but a creative subject; no one can draw much consolation from it when he has lost the power or the desire to create; and that is apt to happen to a mathematician rather soon. It is a pity, but in that case he does not matter a great deal anyhow, and it would be silly to bother about him.

* J.B.S. Haldane, Callinicus: a Defence of Chemical warfare (1924)
** I do not wish to prejudge the question by this much misused word; it may be used quite legitimately to indicate certain types of unbalanced emotion. Many people, of course, use ‘sentimentalism’ as a term of abuse for other people’s decent feelings, and ‘realism’ as a disguise for their own brutality.

oOo

#31
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
29

I WILL end with a summary of my conclusions, but putting them in a more personal way. I said at the beginning that anyone who defends his subject will find that he is defending himself; and my justification of the life of a professional mathematician is bound to be, at bottom, a justification of my won. Thus this concluding section will be in its substance a fragment of autobiography.

I cannot remember ever having wanted to be anything but a mathematician. I suppose that it was always clear that my specific abilities lay that way, and it never occurred to me to question the verdict of my elders. I do not remember having felt, as a boy, any passion for mathematics, and such notions as I may have had of the career of a mathematician were far from noble. I thought of mathematics in terms of examinations of scholarships: I wanted to beat other boys, and this seemed to be the way in which I could do so most decisively.

I was about fifteen when (in a rather odd way) my ambitions took a sharper turn. There is a book by ‘Alan St Aubyn’ * called A Fellow of Trinity, one of a series dealing with what is supposed to be Cambridge college life. I suppose that it is a worse book than most of Marie Corelli’s; but a book can hardly be entirely bad if it fires a clever boy’s imagination. There are two heroes, a primary hero called Flowers, who is almost wholly good, and a secondary hero, a much weaker vessel, called Brown. Flowers and Brown find many dangers in university life, but the worst is a gambling saloon in Chsteron ** run by the Misses Bellenden, two fascinating but extremely wicked young ladies. Flowers survives all these troubles, is Second Wrangler and Senior Classic, and succeeds automatically to a Fellowship (as I suppose he would have done then). Brown succumbs, ruins his parents, takes to drink, is saved from delirium tremens during a thunderstorm by the prayers of the Junior Dean, has much difficulty in obtaining even an Ordinary Degree, and ultimately becomes a missionary. The friendship is not shattered by these unhappy events, and Flowers’s thoughts stray to Brown, with affectionately pity, as he drinks port and eats walnuts for the first time in Senior Combination Room.

Now Flowers was a decent enough fellow (so far as ‘Alan St Aubyn’ could draw one), but even my unsophisticated mind refused to accept him as clever. If he could do these things, why not I? In particular, the final scene in Combination Room fascinated me completely, and from that time, until I obtained one, mathematics primarily a Fellowship of Trinity.

I found at once, when I came to Cambridge, the a Fellowship implied ‘original work’, but it was a long time before I formed any definite idea of research. I had of course found at school, as every pure mathematician does, that I could often do things much better than my teachers; and even at Cambridge I found, though naturally much less frequently, that I could sometimes do things better than the College lecturers. But I was really quite ignorant, even when I took the Tripos, of the subjects on which I have spent the rest of my life, and I still thought of mathematics as essentially a ‘competitive’ subject. My eyes were first opened by Professor Love, who taught me for a few terms and gave me my first serious conception of analysis. But the great debt which I owe to him – he was, after all, primarily an applied mathematician – was his advice to read Jordan’s famous Cours d’analyse; and I shall never forget the astonishment with which I read that remarkable work, the first inspiration for so many mathematicians of my generation, and learnt for the first time as I read it what mathematics really meant. From that time onwards I was in my way a real mathematician, with sound mathematical ambitions and a genuine passion for mathematics.

I wrote a great deal during the next ten years, but very little of any importance; there are not more than four or five papers which I can still remember with some satisfaction. The real crises of my career came ten or twelve years later, in 1911, when I began my long collaboration with Littlewood, and in 1913, when I discovered Ramanujan. I still say to myself when I am depressed, and find myself forced to listen to pompous and tiresome people, ‘Well, I have done one thing you could have never have done, and that is to have collaborated with both Littlewood and Ramanujan on something like equal terms.’ It is to them that I owe an unusually late maturity: I was at my best at a little past forty, when I was a professor at Oxford. Since then I have suffered from that steady deterioration which is the common fate of the elderly men and particularly of elderly mathematicians. A mathematician may still be competent enough at sixty, but it is useless to expect him to have original ideas.

It is plain now that my life, for what it is worth, is finished, and that nothing I can do can perceptibly increase or diminish its value. It is very difficult to dispassionate, but I count it a ‘success’; I have had more reward and not less than was due to a man of my particular grade of ability. I have held a series of comfortable and ‘dignified’ positions. I have had very little trouble with the duller routine of universities. I hate ‘teaching’, and have had to do very little, such teaching as I have done having been almost entirely supervision of research; I love lecturing, and have lectured a great deal to extremely able classes; and I have always had plenty of leisure for the researches which have been the one great permanent happiness of my life. I have found it easy to work with others, and have collaborated on a large scale with two exceptional mathematicians; and this has enabled me to add to mathematics a good deal more than I could reasonably have expected. I have had my disappointments, like any other mathematician, but none of them has been too serious or has made me particularly unhappy. If I had been offered a life neither better nor worse when I was twenty, I would have accepted without hesitation.

I seems absurd to suppose that I could have ‘done better’. I have no linguistic or artistic ability, and very little interest in experimental science. I might have been a tolerable philosopher, but not one of a very original kind. I think that I might have made a good lawyer; but journalism is the only profession, outside academic life, in which I should have felt really confident of my chances. There is no doubt that I was right to be a mathematician, if the criterion is to be what is commonly called success.

My choice was right, then, if what I wanted was reasonably comfortable and happy life. But solicitors and stockbrokers and book makers often lead comfortable and happy lives, and it is very difficult to see how the world is the richer for their existence. Is there any sense in which I can claim that my life has been less futile than theirs? It seems to me again that there is only one possible answer: yes, perhaps, but, if so, for one reason only.

I have never done anything ‘useful’. No discovery of mine has made, or is likely to make, directly or indirectly, for good or ill, the least difference to the amenity of the world. I have helped to train other mathematicians, but mathematicians of the same kind as myself, and their work has been, so far at any rate as I have helped them to it, as useless as my own. Judged by all practical standards, the value of my mathematical life is nil; and outside mathematics it is trivial anyhow. I have just one chance of escaping a verdict of complete triviality, that I may be judged to have created something worth creating. And I have created something undeniable: the question is about its value.

The case for my life, then, or for that of any one else who has been a mathematician in the same sense in which I have been one, is this: that I have added something to knowledge, and helped others to add more; and that these somethings have a value which differs in degree only, and not in kind, from that of the creations of the great mathematicians, or of any of the other artists, great or small, who have left some kind of memorial behind them.

* ‘Alan St Aubyn’ was Mrs Frances Marshall, wife of Matthew Marshall.
** Actually, Chesteron lacks picturesque features.

oOo

#32
madness

madness

    Trung sĩ

  • Thành viên
  • 137 Bài viết
Note

Professor Broad and Dr Snow have both remarked to me that, if I am to strike a fair balance between the good and evil done by science, I must not allow myself to be too much obsessed by its effects on war; and that, even when I am thinking of them, I must remember that it has many very important effects besides those which are purely destructive. Thus (to take the latter point first), I must remember (a) that the organization of an entire population for war is only possible through scientific methods; (b) that science has greatly increased the power of propaganda, which is used almost exclusively for evil; and © that it has made ìneutrality” almost impossible or unmeaning, so that there are no longer ìislands of peace” from sanity and restoration might spread out gradually after war. All this, of course, tends to reinforce the case against science. On the other hand, even if we press this case to the utmost, it is hardly possible to maintain seriously that the evil done by science is not altogether outweighed by the good. For example, if ten million lives were lost in every war, the net effect of science would still have been to increase the average length of life. In short, my § 28 is much to ìsentimental”.

I do not dispute the justice of these criticisms, but, for the reasons which I state in my preface, I have found it impossible to meet them in my text, and content myself with this acknowledgement.

Dr Snow has also made an interesting minor point about § 8. Even if we grant that ìArchimedes will be remembered when Aeschylus is forgotten”, is not mathematical fame a little too ìanonymous” to be wholly satisfying? We could form a fairly coherent picture of the personality of Aeschylus (still more, of course, of Shakespeare or Tolstoi) from their works alone, while Archimedes and Eudoxus would remain mere names.

Mr J.M.Lomas put this point more picturesquely when we were passing the Nelson column in Trafalgar Square. If I had a statue on a column in London, would I prefer the column to be so high that the statue was invisible, or low enough for the features to be recognizable? I would choose the first alternative, Dr Snow, presumable, the second.

oOo

END




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh