Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$\sum \frac{a}{b^2+c^2+a}\leq 1$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 quanghao98

quanghao98

    Trung sĩ

  • Thành viên
  • 127 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Phù Cừ,Hưng Yên
  • Sở thích:Kỹ năng mềm,Đọc sách

Đã gửi 08-02-2014 - 22:49

Cho các số thực dương a,b,c thỏa mãn $abc=1$.Chứng minh rằng:

$\frac{a}{b^2+c^2+a}+\frac{b}{a^+c^2+b}+\frac{c}{a^2+b^2+c}\leq 1$


I've got a dream,the day,I'll catch it,can do...don't never give up...if I dream,I can do it.

         All our DREAMS can come true if we have the courage to pursue them.


#2 HoangHungChelski

HoangHungChelski

    Thượng sĩ

  • Thành viên
  • 283 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Trãi - Hải Dương
  • Sở thích:$\mathfrak{Combinatorics}$ , $\mathfrak{NumberTheory}$

Đã gửi 08-02-2014 - 23:44

http://dethi.violet....ntry_id=5916584

vào đây xem nhé bạn  :icon6:


$$\boxed{\text{When is (xy+1)(yz+1)(zx+1) a Square?}}$$                                


#3 kfcchicken98

kfcchicken98

    Thượng sĩ

  • Thành viên
  • 259 Bài viết
  • Giới tính:Nam

Đã gửi 09-02-2014 - 01:45

Cho các số thực dương a,b,c thỏa mãn $abc=1$.Chứng minh rằng:

$\frac{a}{b^2+c^2+a}+\frac{b}{a^+c^2+b}+\frac{c}{a^2+b^2+c}\leq 1$

cách khác

đặt $a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{c}$

bđt tương đương $\frac{1}{xz^{2}+xy^{2}+y^{2}z^{2}}+\frac{1}{yz^{2}+yx^{2}+x^{2}z^{2}}+\frac{1}{y^{2}z+x^{2}z+x^{2}y^{2}}\leq 1$

có $\sum \frac{1}{xz^{2}+xy^{2}+y^{2}z^{2}}\leq \sum \frac{1}{2+y^{2}z^{2}}$

giờ cần cm $\sum \frac{1}{2+y^{2}z^{2}}\leq 1$

tương đương $\sum \frac{y^{2}z^{2}}{2+2y^{2}z^{2}}\geq 1$

có $\sum \frac{y^{2}z^{2}}{2+2y^{2}z^{2}}\geq \frac{(xy+yz+xz)^{2}}{6+\sum x^{2}y^{2}}\geq \frac{(xy+yz+xz)^{2}}{\sum x^{2}y^{2}+2xyz(x+y+z)}=1$

đpcm






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh