Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

tìm Min của $y= \sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}$


  • Please log in to reply
Chủ đề này có 16 trả lời

#1 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 16-02-2014 - 00:53

câu 1 : a,Tìm giá trị nhỏ nhất của hàm số : y = $\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}$

            b, Cho 3 số thực x,y,z đều lớn hơn 2 và thỏa mãn điều kiện : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}= 1$

                          Chứng minh rằng : (x-2)(y-2)(z-2)$\leq$ 1

 

câu 2 : cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N, P

                     Chứng minh : $\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\geq 9$

 

câu 3 : cho a, b, c là 3 số thực dương.

                      Chứng minh rằng: $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\leq \frac{3}{2}$

 

câu 4 : cho tam giác ABC có độ dài 3 cạnh AB=c; BC=a; CA=b, Các góc của tam giác đó thỏa mãn: $\widehat{C}=2\widehat{A}+\widehat{B}$. Chứng minh rằng : $c^{2}< 2a^{2}+b^{2}$

 

@Viet Hoang 99: Chú ý tiêu đề


Bài viết đã được chỉnh sửa nội dung bởi Viet Hoang 99: 28-03-2014 - 17:58


#2 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 16-02-2014 - 08:34

câu 1 : a,Tìm giá trị nhỏ nhất của hàm số : y = $\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}$

            b, Cho 3 số thực x,y,z đều lớn hơn 2 và thỏa mãn điều kiện : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}= 1$

                          Chứng minh rằng : (x-2)(y-2)(z-2)$\leq$ 1

 

câu 2 : cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N, P

                     Chứng minh : $\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\geq 9$

 

câu 3 : cho a, b, c là 3 số thực dương.

                      Chứng minh rằng: $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\leq \frac{3}{2}$

 

câu 4 : cho tam giác ABC có độ dài 3 cạnh AB=c; BC=a; CA=b, Các góc của tam giác đó thỏa mãn: $\widehat{C}=2\widehat{A}+\widehat{B}$. Chứng minh rằng : $c^{2}< 2a^{2}+b^{2}$

Bài 1:Theo bđt Mincopxki có:$y=\sqrt{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}+\sqrt{(\frac{1}{2}-x)^2+(\frac{\sqrt{3}}{2})^2}\geq \sqrt{(x+\frac{1}{2}+\frac{1}{2}-x)^2+(\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2})^2}=\sqrt{1+3}=\sqrt{4}$

Dấu = xảy ra khi $x=0$



#3 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 16-02-2014 - 08:39

câu 1 : a,Tìm giá trị nhỏ nhất của hàm số : y = $\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}$

            b, Cho 3 số thực x,y,z đều lớn hơn 2 và thỏa mãn điều kiện : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}= 1$

                          Chứng minh rằng : (x-2)(y-2)(z-2)$\leq$ 1

 

câu 2 : cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N, P

                     Chứng minh : $\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\geq 9$

 

câu 3 : cho a, b, c là 3 số thực dương.

                      Chứng minh rằng: $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\leq \frac{3}{2}$

 

câu 4 : cho tam giác ABC có độ dài 3 cạnh AB=c; BC=a; CA=b, Các góc của tam giác đó thỏa mãn: $\widehat{C}=2\widehat{A}+\widehat{B}$. Chứng minh rằng : $c^{2}< 2a^{2}+b^{2}$

Bài 1:Ý b: Đặt $x-2=a,y-2=b,z-2=c$.Do $x,y,z> 2= > a,b,c> 0$

$= >1= \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}= > \frac{1}{a+2}=(\frac{1}{2}-\frac{1}{a+2})+(\frac{1}{2}-\frac{1}{b+2})=\frac{a}{2(a+2)}+\frac{b}{2(b+2)}\geq 2\sqrt{\frac{ab}{4(a+2)(b+2)}}$

Tương tự $\frac{1}{b+2}\geq 2\sqrt{\frac{ac}{4(a+2)(c+2)}},\frac{1}{c+2}\geq 2\sqrt{\frac{ab}{4(a+2)(b+2)}}$

 Nhân theo vế các pt $= > \frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\geq \frac{abc}{(a+2)(b+2)(c+2)}= > abc\leq 1= > (x-2)(y-2)(z-2)\leq 1$(ĐPCM)



#4 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 16-02-2014 - 08:41

câu 1 : a,Tìm giá trị nhỏ nhất của hàm số : y = $\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}$

            b, Cho 3 số thực x,y,z đều lớn hơn 2 và thỏa mãn điều kiện : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}= 1$

                          Chứng minh rằng : (x-2)(y-2)(z-2)$\leq$ 1

 

câu 2 : cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N, P

                     Chứng minh : $\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\geq 9$

 

câu 3 : cho a, b, c là 3 số thực dương.

                      Chứng minh rằng: $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\leq \frac{3}{2}$

 

câu 4 : cho tam giác ABC có độ dài 3 cạnh AB=c; BC=a; CA=b, Các góc của tam giác đó thỏa mãn: $\widehat{C}=2\widehat{A}+\widehat{B}$. Chứng minh rằng : $c^{2}< 2a^{2}+b^{2}$

Câu 2:Theo tỉ số diện tích có:$\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}},\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}},\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}$

Cộng theo vế $= > \frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=S_{ABC}(\frac{1}{S_{AOB}}+S_{AOC}+S_{BOC})\geq S_{ABC}.\frac{9}{S_{ABC}}=9$



#5 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 16-02-2014 - 08:43

câu 1 : a,Tìm giá trị nhỏ nhất của hàm số : y = $\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}$

            b, Cho 3 số thực x,y,z đều lớn hơn 2 và thỏa mãn điều kiện : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}= 1$

                          Chứng minh rằng : (x-2)(y-2)(z-2)$\leq$ 1

 

câu 2 : cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N, P

                     Chứng minh : $\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\geq 9$

 

câu 3 : cho a, b, c là 3 số thực dương.

                      Chứng minh rằng: $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\leq \frac{3}{2}$

 

câu 4 : cho tam giác ABC có độ dài 3 cạnh AB=c; BC=a; CA=b, Các góc của tam giác đó thỏa mãn: $\widehat{C}=2\widehat{A}+\widehat{B}$. Chứng minh rằng : $c^{2}< 2a^{2}+b^{2}$

Bài 3 :Theo Cauchy-Swtach có:$(\sum \sqrt{\frac{a}{b+c+2a}})^2\leq 3.\sum \frac{a}{b+c+2a}=3.\sum \frac{a}{(a+b)+(a+c)}\leq \frac{3}{4}.(\sum \frac{a}{a+b}+\sum \frac{a}{a+c})=\frac{3}{4}.(\sum \frac{a}{a+b}+\sum \frac{b}{a+b})=\frac{3}{4}.3=\frac{9}{4}= > \sum \sqrt{\frac{a}{b+c+2a}}\leq \frac{3}{2}$



#6 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 16-02-2014 - 16:07

bài 1 :

bạn ns rõ hơn về BĐT bunhiacopxki hơn dc ko


Bài viết đã được chỉnh sửa nội dung bởi congchuasaobang: 16-02-2014 - 21:08


#7 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 17-02-2014 - 17:42

Bài 3 :Theo Cauchy-Swtach có:$(\sum \sqrt{\frac{a}{b+c+2a}})^2\leq 3.\sum \frac{a}{b+c+2a}=3.\sum \frac{a}{(a+b)+(a+c)}\leq \frac{3}{4}.(\sum \frac{a}{a+b}+\sum \frac{a}{a+c})=\frac{3}{4}.(\sum \frac{a}{a+b}+\sum \frac{b}{a+b})=\frac{3}{4}.3=\frac{9}{4}= > \sum \sqrt{\frac{a}{b+c+2a}}\leq \frac{3}{2}$

có cách giải khác ko bạn, vì mình chưa học BĐT này



#8 khanhhuy9

khanhhuy9

    Binh nhì

  • Thành viên
  • 10 Bài viết
  • Giới tính:Nam
  • Sở thích:Toán, đọc truyện , nghe nhạc

Đã gửi 17-02-2014 - 17:58

bạn ns rõ hơn về BĐT bunhiacopxki hơn dc ko

1a hay 1b??? ns rõ anh giải cho 



#9 khanhhuy9

khanhhuy9

    Binh nhì

  • Thành viên
  • 10 Bài viết
  • Giới tính:Nam
  • Sở thích:Toán, đọc truyện , nghe nhạc

Đã gửi 17-02-2014 - 18:44



câu 1 : a,Tìm giá trị nhỏ nhất của hàm số : y = $\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}$

            b, Cho 3 số thực x,y,z đều lớn hơn 2 và thỏa mãn điều kiện : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}= 1$

                          Chứng minh rằng : (x-2)(y-2)(z-2)$\leq$ 1

 

câu 2 : cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N, P

                     Chứng minh : $\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\geq 9$

 

câu 3 : cho a, b, c là 3 số thực dương.

                      Chứng minh rằng: $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}$\frac{}{}$}+\sqrt{\frac{c}{a+b+2c}}\leq \frac{3}{2}$

 

câu 4 : cho tam giác ABC có độ dài 3 cạnh AB=c; BC=a; CA=b, Các góc của tam giác đó thỏa mãn: $\widehat{C}=2\widehat{A}+\widehat{B}$. Chứng minh rằng : $c^{2}< 2a^{2}+b^{2}$

 

Câu 2: Đặt SOBC = S1 ; SOCA =S2 ; SOAB = S3 ; SABC= S

Ta có :$\frac{AM}{OM}$ = $\frac{SAMB}{SOMB}$ =$\frac{SAMC}{SOMC}$ =$\frac{SABC}{SOBC}$ 

              

=> $\frac{AM}{OM}$ = $\frac{S}{S1}$ =$\frac{S1+S2+S3}{S1}$

 

Tương tự ta cũng có : $\frac{BN}{ON}$ =$\frac{S1+S2+S3}{S2}$

                                   $\frac{CP}{OP}$ =$\frac{S1+S2+S3}{S3}$

=> $\frac{AM}{OM}$ + $\frac{BN}{ON}$ +$\frac{CP}{OP}$ = ( S1 +S2 +S3)($\frac{1}{S1}$ +$\frac{1}{S2}$ +$\frac{1}{S3}$ (1)

Áp dụng BĐT Cauchy ta có : 

        (1) ≥ 3$\sqrt[3]{xyz}$ . 3$\sqrt[3]{ $\frac{1}{xyz }$ =9

  Dấu đẳng thức xẩy ra khi O là trọng tâm của tam giác

 

p/s: ui cha là đê  :lol:


Bài viết đã được chỉnh sửa nội dung bởi khanhhuy9: 17-02-2014 - 18:46


#10 khanhhuy9

khanhhuy9

    Binh nhì

  • Thành viên
  • 10 Bài viết
  • Giới tính:Nam
  • Sở thích:Toán, đọc truyện , nghe nhạc

Đã gửi 17-02-2014 - 18:47



Câu 2: Đặt SOBC = S1 ; SOCA =S2 ; SOAB = S3 ; SABC= S

Ta có :$\frac{AM}{OM}$ = $\frac{SAMB}{SOMB}$ =$\frac{SAMC}{SOMC}$ =$\frac{SABC}{SOBC}$ 

              

=> $\frac{AM}{OM}$ = $\frac{S}{S1}$ =$\frac{S1+S2+S3}{S1}$

 

Tương tự ta cũng có : $\frac{BN}{ON}$ =$\frac{ S1+S2+S}{ S2}$

                                   $\frac{CP}{OP}$ =$\frac{S1+S2+S3}{S3}$

=> $\frac{AM}{OM}$ + $\frac{BN}{ON}$ +$\frac{CP}{OP}$ = ( S1 +S2 +S3)($\frac{1}{S1}$ +$\frac{1}{S2}$ +$\frac{1}{S3}$ (1)

Áp dụng BĐT Cauchy ta có : 

        (1) ≥ 3$\sqrt[3]{xyz}$ . 3$\sqrt[3]{ $\frac{1}{xyz }$ =9

  Dấu đẳng thức xẩy ra khi O là trọng tâm của tam giác

 

p/s: ui cha là đê  :lol: Ai chỉnh lại zùm cái, lỗi rồi


Bài viết đã được chỉnh sửa nội dung bởi khanhhuy9: 17-02-2014 - 18:50


#11 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 17-02-2014 - 20:10



Câu 2: Đặt SOBC = S1 ; SOCA =S2 ; SOAB = S3 ; SABC= S

Ta có :$\frac{AM}{OM}$ = $\frac{SAMB}{SOMB}$ =$\frac{SAMC}{SOMC}$ =$\frac{SABC}{SOBC}$ 

              

=> $\frac{AM}{OM}$ = $\frac{S}{S1}$ =$\frac{S1+S2+S3}{S1}$

 

Tương tự ta cũng có : $\frac{BN}{ON}$ =$\frac{S1+S2+S3}{S2}$

                                   $\frac{CP}{OP}$ =$\frac{S1+S2+S3}{S3}$

=> $\frac{AM}{OM}$ + $\frac{BN}{ON}$ +$\frac{CP}{OP}$ = ( S1 +S2 +S3)($\frac{1}{S1}$ +$\frac{1}{S2}$ +$\frac{1}{S3}$ (1)

Áp dụng BĐT Cauchy ta có : 

        (1) ≥ 3$\sqrt[3]{xyz}$ . 3$\sqrt[3]{ $\frac{1}{xyz }$ =9

  Dấu đẳng thức xẩy ra khi O là trọng tâm của tam giác

 

p/s: ui cha là đê  :lol:

bạn ns ai zậy, ko hiểu ko bx ko liên quan


Bài viết đã được chỉnh sửa nội dung bởi congchuasaobang: 17-02-2014 - 20:15


#12 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 17-02-2014 - 20:12

 



Câu 2: Đặt SOBC = S1 ; SOCA =S2 ; SOAB = S3 ; SABC= S

Ta có :$\frac{AM}{OM}$ = $\frac{SAMB}{SOMB}$ =$\frac{SAMC}{SOMC}$ =$\frac{SABC}{SOBC}$ 

              

=> $\frac{AM}{OM}$ = $\frac{S}{S1}$ =$\frac{S1+S2+S3}{S1}$

 

Tương tự ta cũng có : $\frac{BN}{ON}$ =$\frac{ S1+S2+S}{ S2}$

                                   $\frac{CP}{OP}$ =$\frac{S1+S2+S3}{S3}$

=> $\frac{AM}{OM}$ + $\frac{BN}{ON}$ +$\frac{CP}{OP}$ = ( S1 +S2 +S3)($\frac{1}{S1}$ +$\frac{1}{S2}$ +$\frac{1}{S3}$ (1)

Áp dụng BĐT Cauchy ta có : 

        (1) ≥ 3$\sqrt[3]{xyz}$ . 3$\sqrt[3]{ $\frac{1}{xyz }$ =9

  Dấu đẳng thức xẩy ra khi O là trọng tâm của tam giác

 

p/s: ui cha là đê  :lol: Ai chỉnh lại zùm cái, lỗi rồi

 

bạn ghi như zậy thì ai hiểu mà sửa đc cơ chứ <_<  :mellow:



#13 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 17-02-2014 - 20:15

1a hay 1b??? ns rõ anh giải cho 

mình GIẾT, nhầm người rồi cha



#14 aidayta

aidayta

    Lính mới

  • Thành viên
  • 6 Bài viết

Đã gửi 17-02-2014 - 20:25

bạn ghi như zậy thì ai hiểu mà sửa đc cơ chứ <_<  :mellow:

 

 



Câu 2: Đặt SOBC = S1 ; SOCA =S2 ; SOAB = S3 ; SABC= S

Ta có :$\frac{AM}{OM}$ = $\frac{SAMB}{SOMB}$ =$\frac{SAMC}{SOMC}$ =$\frac{SABC}{SOBC}$ 

              

=> $\frac{AM}{OM}$ = $\frac{S}{S1}$ =$\frac{S1+S2+S3}{S1}$

 

Tương tự ta cũng có : $\frac{BN}{ON}$ =$\frac{S1+S2+S3}{S2}$

                                   $\frac{CP}{OP}$ =$\frac{S1+S2+S3}{S3}$

=> $\frac{AM}{OM}$ + $\frac{BN}{ON}$ +$\frac{CP}{OP}$ = ( S1 +S2 +S3)($\frac{1}{S1}$ +$\frac{1}{S2}$ +$\frac{1}{S3}$ (1)

Áp dụng BĐT Cauchy ta có : 

        (1) ≥ 3$\sqrt[3]{xyz}$ . 3$\sqrt[3]{ $\frac{1}{xyz }$ =9

  Dấu đẳng thức xẩy ra khi O là trọng tâm của tam giác

 

p/s: ui cha là đê  


Bài viết đã được chỉnh sửa nội dung bởi aidayta: 17-02-2014 - 20:31


#15 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 17-02-2014 - 23:03

Câu 2: Đặt SOBC = S1 ; SOCA =S2 ; SOAB = S3 ; SABC= S

Ta có :$\frac{AM}{OM}$ = $\frac{SAMB}{SOMB}$ =$\frac{SAMC}{SOMC}$ =$\frac{SABC}{SOBC}$ 

              

=> $\frac{AM}{OM}$ = $\frac{S}{S1}$ =$\frac{S1+S2+S3}{S1}$

 

Tương tự ta cũng có : $\frac{BN}{ON}$ =$\frac{S1+S2+S3}{S2}$

                                   $\frac{CP}{OP}$ =$\frac{S1+S2+S3}{S3}$

=> $\frac{AM}{OM}$ + $\frac{BN}{ON}$ +$\frac{CP}{OP}$ = ( S1 +S2 +S3)($\frac{1}{S1}$ +$\frac{1}{S2}$ +$\frac{1}{S3}$ (1)

Áp dụng BĐT Cauchy ta có : 

        (1) ≥ 3$\sqrt[3]{xyz}$ . 3$\sqrt[3]{ $\frac{1}{xyz }$ =9

  Dấu đẳng thức xẩy ra khi O là trọng tâm của tam giác

 

p/s: ui cha là đê  :lol:

thể theo nguyện vọng của mi đó



#16 khanhhuy9

khanhhuy9

    Binh nhì

  • Thành viên
  • 10 Bài viết
  • Giới tính:Nam
  • Sở thích:Toán, đọc truyện , nghe nhạc

Đã gửi 19-02-2014 - 23:21

mình GIẾT, nhầm người rồi cha

đê quá :v :icon6:



#17 MaiAn2604

MaiAn2604

    Binh nhì

  • Thành viên
  • 12 Bài viết

Đã gửi 08-09-2014 - 23:08

có ai có thể giải bài 1a theo hàm số không vậy






2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh