Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

CMR: $\sum \frac{1}{1+(n-1)a_{i}}\geqslant 1$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 buitudong1998

buitudong1998

    Trung úy

  • Thành viên
  • 873 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Vĩnh Phúc
  • Sở thích:kungfu

Đã gửi 13-03-2014 - 18:55

Cho $a_{1},a_{2},...,a_{n}$ dương thỏa mãn : $a_{1}a_{2}...a_{n}=1$. CMR: $\sum \frac{1}{1+(n-1)a_{i}}\geqslant 1$


Đứng dậy và bước tiếp

#2 nam8298

nam8298

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nam
  • Đến từ:Vĩnh Phúc
  • Sở thích:đá bóng chơi cờ và làm toán

Đã gửi 28-03-2014 - 20:26

đặt  $a_{i}= \frac{1}{x_{i}}$

theo Cauchy-Schwazt ta có $\sum \frac{x_{i}}{x_{i}+n-1}\geq \frac{(\sum \sqrt{x_{i}})^{2}}{\sum (x_{i}+n-1)}$

ta sẽ chứng minh $(\sum \sqrt{x_{i}})^{2}\geq n(n-1)+\sum x_{i}$

nhân ra rút gọn 2 vế rồi dùng AM-GM là xong


Làm toán là một nghệ thuật mà trong đó người làm toán là một nghệ nhân





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh