Đến nội dung

Hình ảnh

Góp ý cho box "Bất Đẳng thức và Cực trị"


  • Please log in to reply
Chủ đề này có 34 trả lời

#21
dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết

sao bài em lại bị khoá ạ
http://diendantoanho...915-hinh-9-kho/

Đọc kỹ lời giải thích của mod THCS ở #2 (Topic vi phạm nội quy về cách đặt tiêu đề)
"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#22
Oral1020

Oral1020

    Thịnh To Tướng

  • Thành viên
  • 1225 Bài viết

sao bài em lại bị khoá ạ
http://diendantoanho...915-hinh-9-kho/

Sai tiệu đề thôi.bạn hãy sửa lại tiêu đề. :D
Cách đặt tiêu đề nè : http://diendantoanho...i-khong-bị-xoa/

"If I feel unhappy,I do mathematics to become happy.


If I feel happy,I do mathematics to keep happy."

Alfréd Rényi

Hình đã gửi


#23
phamdan1508

phamdan1508

    Lính mới

  • Thành viên
  • 7 Bài viết

Nhờ mọi người giải giúp bài 2 bài này

Bài 1 Cho x,y,z > 0  cm :  $\frac{x^{2}-z^{2}}{y + z} + \frac{z^{2}-y^{2}}{x + y} + \frac{y^{2}-x^{2}}{z + x} \geqslant 0$

 

bài 2: Cho x + y # 0, x#0 , y # 0 
$x^{2} + y^{2} = xy(2x + y)$

Tìm Min, max của biểu thức:
$\frac{2}{x}+\frac{1}{y}$
 

Cảm ơn !


Bài viết đã được chỉnh sửa nội dung bởi phamdan1508: 28-04-2013 - 01:37


#24
phanha

phanha

    Binh nhất

  • Thành viên
  • 21 Bài viết

Thực ra bạn nói cũng không chính xác lắm.Có nhiều bài bất đẳng thức đâu chỉ dùng MV mà cũng có thể dùng các phép biến đổi sơ cấp như p,q,r và Shur thui.các bất đẳng thức cổ điển là đương nhiên và pp S.O.S cũng không vượt quá kiến thức THCS lắm.Kể cả dồn biến MV thì cũng có một phần lớn là với kt THCS cũng có thể hiểu và vận dùng giải BDT được đấy chứ.Chỉ như hàm lồi,lõi,karamata,Langrage,Jensen,...là chưa thể dùng nên các tv nên post nó vào box THPT nhưng lưu ý nếu dùng được các bdt cổ điển để giải thì vẫn có thể post nó vào đây.Chúng ta chỉ post để cho đúng với kiến thức và trình đọ THCS thui chứ cũng có nhiều thành viên là Sinh Viên,nữ sinh vào đây giải đó thui.Do vậy cần phải xem xét trước khi post bài ....vv.

anh ơi.ở cấp 2 chỉ mới học 3 bất đẳng thức svac.bunhia,cosi thôi anh à



#25
lvc11to14

lvc11to14

    Binh nhì

  • Thành viên
  • 11 Bài viết

$\sqrt{x^{4}-^{\sqrt[3]{x2}}}}\doteq x^{2}\dotplus 2\sqrt{x}$



#26
nghiemthanhbach

nghiemthanhbach

    $\sqrt{MF}'s\;friend$

  • Thành viên
  • 1056 Bài viết

mình có cái này ai muốn tham khảo thì cứ việc

http://dethi.violet....ntry_id=7886315



#27
khoacktv

khoacktv

    Lính mới

  • Thành viên
  • 6 Bài viết

chào các bạn. Mình có 1 số vấn đề muốn hỏi. Hiện giờ có 1 ý kiến dựa vào $f(x)\leq m \forall x\Leftrightarrow Max f(x)\leq m$ để CM BDT sau: Cho x,y,z>0 x+y+z=3

P=$\frac{x^{2}}{1+y^{2}}+\frac{y^{2}}{1+z^{2}}+\frac{z^{2}}{1+x^{2}}\geq \frac{3}{2}$

Bài giải

Sử dụng BDT cauchy schwarz ta có P $\geq \frac{(x+y+z)^{2}}{3+x^{2}+y^{2}+z^{2}}$=f(x,y,z)  $\forall$ x,y,z>0

Mà f(x,y,z)$\leq \frac{(x+y+z)^{2}}{3+\frac{(x+y+z)^{2}}{3}}$=3/2 $\forall$ x,y,z>0

vì $P\geq f(x,y,z)\Leftrightarrow P\geq Max f(x,y,z)=3/2 hay P\geq 3/2 (đpcm)$

Bạn xem bài chứng minh này đúng không. Nếu sai mong bạn nói rõ chỗ sai dùm.



#28
haidaik0164

haidaik0164

    Lính mới

  • Thành viên
  • 9 Bài viết

nói chung dạng này còn khó



#29
hoahoalop9c

hoahoalop9c

    Binh nhất

  • Thành viên
  • 26 Bài viết

E tưởng topic này hỏi đáp về BĐT và cực trị saO ở đây toàn nói về cái gì đấy

Chủ pic thử đăng mấy bài dễ cho mem làm nào :D



#30
xuanpho

xuanpho

    Lính mới

  • Thành viên
  • 1 Bài viết

các bạn thảo luận đi vào tiêu đề chính đi nhé, để cho mọi người còn xin ý kiến nha


Làm cua kinh thuy luc Tốt rẻ nhất, bán bản lề cua kinh cuong luc chính hãng, Tải cua kinh thuy luc gia bao nhieu ở đây. phụ kiện cầu thang kính đẹp và mẫu tay co thủy lực giá rẻ , cua nhua loi thep nên dùng chân nhện đỡ kính inox


#31
ttztrieuztt

ttztrieuztt

    Trung sĩ

  • Thành viên
  • 128 Bài viết

E tưởng topic này hỏi đáp về BĐT và cực trị saO ở đây toàn nói về cái gì đấy

Chủ pic thử đăng mấy bài dễ cho mem làm nào :D

bài dễ hả mình có bài này ko biết dễ hay khó đây

cho a, b, c là các số thực dương c/m:

 $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}$


                                                                                                       :like    CHUẨN THÌ LIKE SAI THÌ SỬA  :botay

                                                     

                                   :oto:    Sống là để cống hiến      :oto: 


#32
nokia123

nokia123

    Lính mới

  • Thành viên
  • 1 Bài viết

hôm nay mới biết tới trang này, cần sự giúp đỡ của mọi người về hình học lợp 9



#33
Element hero Neos

Element hero Neos

    Trung úy

  • Thành viên
  • 943 Bài viết

bài dễ hả mình có bài này ko biết dễ hay khó đây

cho a, b, c là các số thực dương c/m:

 $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3} {2}$

bđt nesbit



#34
Air Force

Air Force

    Trung sĩ

  • Thành viên
  • 145 Bài viết

phương pháp giải BĐT-Cực trị

Ví dụ 1CMR Với $a,b \in R$ và $a+b=4$ thì $a^{4}+b^{4} \geq 32$

Nhận xét rằng một biểu thức nhiều biến thường đạt giá trị lớn nhất hay nhỏ nhất khi tất cả các biến bằng nhau ( tổng quát hơn là trường hợp một số biến bằng nhau) hoặc một số biến có giá trị trên biên. Điều này gợi ý cho ta cách đổi biến như sau

Lời giải
Do $a+b=4$ nên có thể đặt $a=2+x,b=2-x$ với $x\in R$
Ta có $a^{4}+b^{4}=(2+x)^{4}+(2-x)^{4}=2x^{4}+48x^{2}+32 \geq 32$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi $x=0 \Leftrightarrow a=b=2$.
Như vậy bằng cách đổi biến thích hợp chúng ta đã đưa bài toán về dạng đơn giản có thể đánh giá trực tiếp được và BĐT chúng ta sử dụng chỉ là BĐT cơ bản nhất $x^{2} \geq 0, \forall x\in R$

Tiếp theo chúng ta xem xét một vài ví dụ khác. Qua đó hi vọng các bạn học sinh THCS sẽ có được một cách nhìn mới với những bài toán BĐT kiểu này.

Ví dụ 2. Cho $a,b \in R$ thỏa mãn $a+b \geq 2$. CMR
$$a^{3}+b^{3} \leq a^{4}+b^{4}$$

Lời giải
Đặt $a=1+x,b=1+y$. Từ $a+b \geq 2$ ta có $x+y \geq 0$
BĐT cần chứng minh tương đương với
$$(1+x)^{3}+(1+y)^{3} \leq (1+x)^{4}+(1+y)^{4}$$

$\Leftrightarrow x(1+x)^{3}+y(1+y)^{3} \geq0$

$\Leftrightarrow x^{4}+y^{4}+3(x+y)(x^{2}-xy+y^{2})+3(x^{2}+y^{2})+x+y \geq 0$
(BĐT này đúng vì $x+y \geq 0$)
Đẳng thức xảy ra khi và chỉ khi:
$$ x=y=0 \Leftrightarrow a=b=1$$.

Ví dụ 3. Cho $a,b,c\in R$ thỏa mãn $a+b+c=3$. CMR
$$a^{2}+b^{2}+c^{2}+ab+bc+ca \geq 6$$

Lời giải.
Vì $a+b+c=3$ nên có thể đặt $a=1+x ,b=1+y, c=1-x-y$ với $x,y \in R$
Ta có
$$a^{2}+b^{2}+c^{2}+ab+bc+ca=(1+x)^{2}+(1+y)^{2}+(1-x-y)^{2}+$$
$$+(1-x)(1-y)+(1-y)(1-x-y)+(1-x-y)(1-x)$$
$$=x^{2}+xy+y^{2}+6=(x+\dfrac{y}{2})^{2}+\dfrac{3y^{2}}{4}+6\geq 6$$
Đó là đpcm.
Đẳng thức xảy ra khi và chỉ khi
$$ y=0,x+\dfrac{y}{2}=0 \Leftrightarrow a=b=c=1$$


Ví dụ 4. Cho $a,b,c,d\in R$ thỏa mãn $a+b+c+d=1$. CMR
$$(a+c)(b+d)+2ac+2bd \leq \dfrac{1}{2}$$

Lời giải.
Vì $a+b+c+d=1$ nên có thể đặt
$$a=\dfrac{1}{4}+x+z , b= \dfrac{1}{4}-x+z ,c=\dfrac{1}{4}+y-z ,d= \dfrac{1}{4}-y-z $$
Ta có
$VT=(a+c)(b+d)+2ac+2bd$
$ =(\dfrac{1}{2}+x+y)(\dfrac{1}{2}-x-y)+2(\dfrac{1}{4}+x+z)(\dfrac{1}{4}+y-z)+2(\dfrac{1}{4}-x+z)(\dfrac{1}{4}-y-z)$

$= \dfrac{1}{2}-(x-y)^{2}-4z^{2} \leq \dfrac{1}{2}$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi
$$ x-y=0,z=0 \Leftrightarrow a=c ,b=d$$

Ví dụ 5. Cho $a,b,c,d\in R$ thỏa mãn $a+b=c+d$. CMR
$$c^{2}+d^{2}+cd \geq 3ab$$

Lời giải.
Do $a+b=c+d$ nên ta đặt $c=a+x , d=b-x$ với $x\in R$
Ta có
$$c^{2}+d^{2}+cd =(a+x)^{2}+(b-x)^{2}+(a+x)(b-x)=(a-b+\dfrac{x}{2})^{2}+\dfrac{3x^{2}}{4}+3ab\geq 3ab$$
Đẳng thức xảy ra khi và chỉ khi
$$a-b+\dfrac{x}{2}=x=0 \Leftrightarrow a=b=c=d$$

Ví dụ 6. Cho $x,y\in R,x<2$ và $x+y>5$. CMR
$$5x^{2}+2y^{2}+8y>62$$
Lời giải.
Vì $x<2,x+y>5$ nên ta đặt $x=2- t , x+y=5+u$ ($t,u >0$)
$$5x^{2}+2y^{2}+8y=5(2-t)^{2}+2(3+t+u)^{2}+8(3+t+u)=62+2(t+u)^{2}+5t^{2}+20u>62$$
Ta có đpcm

Ví dụ 7. Cho$ x,y\in R ,x \leq 1 ,x+y \geq 3$. Tìm GTNN của $F= 3x^{2}+y^{2}+3xy$
Lời giải.
Đặt $x=1-a, x+y =3+b$ thì $y=2+a+b;a,b \geq 0 $
Ta có
$3x^{2}+y^{2}+3xy=3(1-a)^{2}+(2+a+b)^{2}+3(1-a)(2+a+b)$
$=a^{2}+b^{2}-5a+7b-ab+13$
$=(a-\dfrac{b}{2}-\dfrac{5}{2})^{2}+\dfrac{3b^{2}}{4}+\dfrac{9b}{2}+\dfrac{27}{4} \geq \dfrac{27}{4}$
Đẳng thức xảy ra khi và chỉ khi:
$$ a=\dfrac{5}{2},b=0 \Leftrightarrow x=\dfrac{-3}{2},y=\dfrac{9}{2}$$

Ví dụ 8 Cho $x,y \in R,x+y=3 ,x \leq 1$. CMR
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y \geq 0$$

Lời giải.
Đặt $x=1-w$ thì $y=2+w$($w \geq 0$)
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y\geq0 \Leftrightarrow (2+w)^{3}-(1-w)^{3}-6(2+w)^{2}-(1-w)^{2}+9(2+w) \geq0 $$
$\Leftrightarrow w(w-1)^{2} \geq 0$ (đúng)
Đẳng thức xảy ra khi và chỉ khi
$$ w \in$ \{0;1\} \Leftrightarrow (x;y)\in \{(1;2),(0;3)\}$$

Lời kết. Như vậy với việc đổi biển khéo léo ta có thể đưa việc xét một biểu thức phức tạp về một biểu thức đơn giản hơn,phù hợp với trình độ THCS. Những VD trên là đơn giản (không có VD nào có thể coi là khó!)và những lời giải trên là để minh họa cho kĩ thuật nên có thể chưa phải là Lời giải hay nhất,ngắn gọn nhất. Tác giả cho rằng việc đưa ra quá nhiều VD sẽ chỉ nhàm chán và vô vị ,vì vậy chỉ đưa ra vài VD đơn giản để bạn đọc có thể nắm bắt được ý tưởng nhanh chóng. Khi đã nắm bắt được ý tưởng ,bạn hoàn toàn có thể ''đánh bay'' một lớp các bài toán như vậy và đương nhiên bạn cũng có thể tự tạo ra các bài toán kiểu này. Dưới đây cũng là những BT đơn giản để các bạn thử nghiệm!

BT áp dụng.
Bài 1. Cho $a,b\in R,ab \geq 1$.CM $a^{2}+b^{2} \geq a+b$
Bài 2.Cho $x,y\in R, x+y=3,x \leq 1$.CM
a)$x^{3}+y^{3} \geq 9$
b)$2x^{4}+y^{4} \geq 18$

Bài 3.Cho $x,y>0$ thỏa mãn $x+y=1$
Tìm GTNN của $P= \dfrac{1}{x^{2}+y^{2}}+\dfrac{3}{4xy}$

Bài 4 Cho $a,b \in R,a+b>8 ,b>3$
CMR $27a^{2}+10b^{3}>945$      



#35
AnhTran2911

AnhTran2911

    Thượng sĩ

  • Thành viên
  • 230 Bài viết

phương pháp giải BĐT-Cực trị

Ví dụ 1. CMR Với $a,b \in R$ và $a+b=4$ thì $a^{4}+b^{4} \geq 32$

Nhận xét rằng một biểu thức nhiều biến thường đạt giá trị lớn nhất hay nhỏ nhất khi tất cả các biến bằng nhau ( tổng quát hơn là trường hợp một số biến bằng nhau) hoặc một số biến có giá trị trên biên. Điều này gợi ý cho ta cách đổi biến như sau

Lời giải
Do $a+b=4$ nên có thể đặt $a=2+x,b=2-x$ với $x\in R$
Ta có $a^{4}+b^{4}=(2+x)^{4}+(2-x)^{4}=2x^{4}+48x^{2}+32 \geq 32$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi $x=0 \Leftrightarrow a=b=2$.
Như vậy bằng cách đổi biến thích hợp chúng ta đã đưa bài toán về dạng đơn giản có thể đánh giá trực tiếp được và BĐT chúng ta sử dụng chỉ là BĐT cơ bản nhất $x^{2} \geq 0, \forall x\in R$

Tiếp theo chúng ta xem xét một vài ví dụ khác. Qua đó hi vọng các bạn học sinh THCS sẽ có được một cách nhìn mới với những bài toán BĐT kiểu này.

Ví dụ 2. Cho $a,b \in R$ thỏa mãn $a+b \geq 2$. CMR
$$a^{3}+b^{3} \leq a^{4}+b^{4}$$

Lời giải
Đặt $a=1+x,b=1+y$. Từ $a+b \geq 2$ ta có $x+y \geq 0$
BĐT cần chứng minh tương đương với
$$(1+x)^{3}+(1+y)^{3} \leq (1+x)^{4}+(1+y)^{4}$$

$\Leftrightarrow x(1+x)^{3}+y(1+y)^{3} \geq0$

$\Leftrightarrow x^{4}+y^{4}+3(x+y)(x^{2}-xy+y^{2})+3(x^{2}+y^{2})+x+y \geq 0$
(BĐT này đúng vì $x+y \geq 0$)
Đẳng thức xảy ra khi và chỉ khi:
$$ x=y=0 \Leftrightarrow a=b=1$$.

Ví dụ 3. Cho $a,b,c\in R$ thỏa mãn $a+b+c=3$. CMR
$$a^{2}+b^{2}+c^{2}+ab+bc+ca \geq 6$$

Lời giải.
Vì $a+b+c=3$ nên có thể đặt $a=1+x ,b=1+y, c=1-x-y$ với $x,y \in R$
Ta có
$$a^{2}+b^{2}+c^{2}+ab+bc+ca=(1+x)^{2}+(1+y)^{2}+(1-x-y)^{2}+$$
$$+(1-x)(1-y)+(1-y)(1-x-y)+(1-x-y)(1-x)$$
$$=x^{2}+xy+y^{2}+6=(x+\dfrac{y}{2})^{2}+\dfrac{3y^{2}}{4}+6\geq 6$$
Đó là đpcm.
Đẳng thức xảy ra khi và chỉ khi
$$ y=0,x+\dfrac{y}{2}=0 \Leftrightarrow a=b=c=1$$


Ví dụ 4. Cho $a,b,c,d\in R$ thỏa mãn $a+b+c+d=1$. CMR
$$(a+c)(b+d)+2ac+2bd \leq \dfrac{1}{2}$$

Lời giải.
Vì $a+b+c+d=1$ nên có thể đặt
$$a=\dfrac{1}{4}+x+z , b= \dfrac{1}{4}-x+z ,c=\dfrac{1}{4}+y-z ,d= \dfrac{1}{4}-y-z $$
Ta có
$VT=(a+c)(b+d)+2ac+2bd$
$ =(\dfrac{1}{2}+x+y)(\dfrac{1}{2}-x-y)+2(\dfrac{1}{4}+x+z)(\dfrac{1}{4}+y-z)+2(\dfrac{1}{4}-x+z)(\dfrac{1}{4}-y-z)$

$= \dfrac{1}{2}-(x-y)^{2}-4z^{2} \leq \dfrac{1}{2}$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi
$$ x-y=0,z=0 \Leftrightarrow a=c ,b=d$$

Ví dụ 5. Cho $a,b,c,d\in R$ thỏa mãn $a+b=c+d$. CMR
$$c^{2}+d^{2}+cd \geq 3ab$$

Lời giải.
Do $a+b=c+d$ nên ta đặt $c=a+x , d=b-x$ với $x\in R$
Ta có
$$c^{2}+d^{2}+cd =(a+x)^{2}+(b-x)^{2}+(a+x)(b-x)=(a-b+\dfrac{x}{2})^{2}+\dfrac{3x^{2}}{4}+3ab\geq 3ab$$
Đẳng thức xảy ra khi và chỉ khi
$$a-b+\dfrac{x}{2}=x=0 \Leftrightarrow a=b=c=d$$

Ví dụ 6. Cho $x,y\in R,x<2$ và $x+y>5$. CMR
$$5x^{2}+2y^{2}+8y>62$$
Lời giải.
Vì $x<2,x+y>5$ nên ta đặt $x=2- t , x+y=5+u$ ($t,u >0$)
$$5x^{2}+2y^{2}+8y=5(2-t)^{2}+2(3+t+u)^{2}+8(3+t+u)=62+2(t+u)^{2}+5t^{2}+20u>62$$
Ta có đpcm

Ví dụ 7. Cho$ x,y\in R ,x \leq 1 ,x+y \geq 3$. Tìm GTNN của $F= 3x^{2}+y^{2}+3xy$
Lời giải.
Đặt $x=1-a, x+y =3+b$ thì $y=2+a+b;a,b \geq 0 $
Ta có
$3x^{2}+y^{2}+3xy=3(1-a)^{2}+(2+a+b)^{2}+3(1-a)(2+a+b)$
$=a^{2}+b^{2}-5a+7b-ab+13$
$=(a-\dfrac{b}{2}-\dfrac{5}{2})^{2}+\dfrac{3b^{2}}{4}+\dfrac{9b}{2}+\dfrac{27}{4} \geq \dfrac{27}{4}$
Đẳng thức xảy ra khi và chỉ khi:
$$ a=\dfrac{5}{2},b=0 \Leftrightarrow x=\dfrac{-3}{2},y=\dfrac{9}{2}$$

Ví dụ 8 Cho $x,y \in R,x+y=3 ,x \leq 1$. CMR
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y \geq 0$$

Lời giải.
Đặt $x=1-w$ thì $y=2+w$($w \geq 0$)
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y\geq0 \Leftrightarrow (2+w)^{3}-(1-w)^{3}-6(2+w)^{2}-(1-w)^{2}+9(2+w) \geq0 $$
$\Leftrightarrow w(w-1)^{2} \geq 0$ (đúng)
Đẳng thức xảy ra khi và chỉ khi
$$ w \in$ \{0;1\} \Leftrightarrow (x;y)\in \{(1;2),(0;3)\}$$

Lời kết. Như vậy với việc đổi biển khéo léo ta có thể đưa việc xét một biểu thức phức tạp về một biểu thức đơn giản hơn,phù hợp với trình độ THCS. Những VD trên là đơn giản (không có VD nào có thể coi là khó!)và những lời giải trên là để minh họa cho kĩ thuật nên có thể chưa phải là Lời giải hay nhất,ngắn gọn nhất. Tác giả cho rằng việc đưa ra quá nhiều VD sẽ chỉ nhàm chán và vô vị ,vì vậy chỉ đưa ra vài VD đơn giản để bạn đọc có thể nắm bắt được ý tưởng nhanh chóng. Khi đã nắm bắt được ý tưởng ,bạn hoàn toàn có thể ''đánh bay'' một lớp các bài toán như vậy và đương nhiên bạn cũng có thể tự tạo ra các bài toán kiểu này. Dưới đây cũng là những BT đơn giản để các bạn thử nghiệm!

BT áp dụng.
Bài 1. Cho $a,b\in R,ab \geq 1$.CM $a^{2}+b^{2} \geq a+b$
Bài 2.Cho $x,y\in R, x+y=3,x \leq 1$.CM
a)$x^{3}+y^{3} \geq 9$
b)$2x^{4}+y^{4} \geq 18$

Bài 3.Cho $x,y>0$ thỏa mãn $x+y=1$
Tìm GTNN của $P= \dfrac{1}{x^{2}+y^{2}}+\dfrac{3}{4xy}$

Bài 4 Cho $a,b \in R,a+b>8 ,b>3$
CMR $27a^{2}+10b^{3}>945$      

Bài viết của bạn hoàn toàn trùng lặp với tài liệu phổ dụng hiên nay.

Đã là một bài viết thì phải có sự sáng tạo,tự bản thân mình sáng tạo ra để mọi người trên diễn đàn đều đc biết và học hỏi.

Trên đây là nhữg ý kiến của mình, có gì sai sót mong moị người bỏ qua cho.


        AQ02

                                 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh