Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng $PQ^2=QR.ST$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Ham học toán hơn

Ham học toán hơn

    Sĩ quan

  • Thành viên
  • 389 Bài viết
  • Giới tính:Không khai báo

Đã gửi 17-04-2014 - 22:14

Cho tam giác ABC nhọn, nội tiếp trong đường tròn (O). Lấy điểm P trên cung $AB$ không chứa C của đường tròn (O) (P khác AB). Đường thẳng qua P vuông góc với OA cắt các đường thẳng AB, AC theo thứ tự tại Q, R; đường thẳng qua P vuông góc với OB cắt các đường thẳng AB, BC theo thứ tự tại S, T.

 

1.     Chứng minh rằng tam giác PQS cân

2. Chứng minh rằng $PQ^2=QR.ST$


新一工藤 - コナン江戸川

#2 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 17-04-2014 - 22:47

a, Ta có $\Delta OAB$ cân ( vì OA, OB là bán kính đường tròn tâm O )

           nên $\widehat{OAB}=\widehat{OBA}$                                                                    (1)

    Xét $\Delta AQR$ vuông tại R, ta có $\widehat{AQR}+\widehat{QAR}=90^{\circ}$

                                                      hay  $\widehat{AQR}+\widehat{OAB}=90^{\circ}$        (2)

    Xét $\Delta BST$ vuông tại T, ta có $\widehat{TSB}+\widehat{SBT}=90^{\circ}$

                                                     hay $\widehat{TSB}+\widehat{OBA}=90^{\circ}$           (3)

    Từ (1), (2) và (3) ta được $\widehat{TSB}=\widehat{AQR}$

                                 nên $\widehat{PSQ}=\widehat{PQS}$ ( 2 cặp góc đối đỉnh bằng nhau)

               hay $\Delta PQS$ cân tại P






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh