Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Trận 8 - Hình học

mss 2014

  • Please log in to reply
Chủ đề này có 23 trả lời

#21 Viet Hoang 99

Viet Hoang 99

    $\textbf{Trương Việt Hoàng}$

  • Điều hành viên THPT
  • 2289 Bài viết
  • Giới tính:Nam
  • Đến từ:Đại học Bách Khoa Hà Nội
  • Sở thích:$\mathfrak{s}$treetwear

Đã gửi 01-05-2014 - 20:48

BQT tha cho em với (nếu có thể)

Bài em sai chỗ này:

 

Cho em sửa :

$\Delta ABD$ có $K,M,I$ thẳng hàng:$\frac{MA}{MB}=\frac{IA}{ID}.\frac{KD}{KB}$

$\Delta ACD$ có $K,I,N$ thẳng hàng :$\frac{AN}{CN}=\frac{KD}{KC}.\frac{IA}{ID}$

Từ đó :

$\frac{AM.AN}{BM.CN}=\frac{KD^{2}}{KB.KC}.(\frac{IA}{ID})^{2}=\frac{KD^{2}}{KB.KC}.(\frac{AB+AC}{CB})^{2}$

Đặt $KB=x;BD=y;DC=z$ Khi đó:

$\frac{AM.AN}{BM.CN}=\frac{KD^{2}}{KB.KC}.\frac{(AB+AC)^{2}}{BC^{2}}$

$=\frac{(AB+AC)^{2}.(x+y)^{2}}{(x+y+z)x.BC^{2}}$

Suy ra ĐPCM$\Leftrightarrow (AB+AC)^{2}(x+y)^{2}\geq 4(x+y+z)x.AB.AC$

$\Leftrightarrow (\frac{AB}{AC}+1)^{2}(x+y)^{2}\geq 4(x+y+z)x\frac{AB}{AC}$

Mà $\frac{AB}{AC}=\frac{y}{z}\Rightarrow$

BĐT$\Leftrightarrow$$(y+z)^{2}(x+y)^{2}\geq 4xz(y^{2}+yx+yz)\Leftrightarrow (y^{2}+xy+yz-zx)^{2}\geq 0$(LĐ)

Dấu "="không xảy ra

Chỉ là nhầm lẫn nhưng mình nghĩ là không thể rồi @@ (Vì cái này ngang với ấn vào nút Sửa)
Nhưng bài kia vẫn được nửa số điểm đấy



#22 angleofdarkness

angleofdarkness

    Thượng sĩ

  • Thành viên
  • 246 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:K48 chuyên toán - THPT chuyên ĐHSP Hà Nội.

Đã gửi 01-05-2014 - 22:18

Chỉ là nhầm lẫn nhưng mình nghĩ là không thể rồi @@ (Vì cái này ngang với ấn vào nút Sửa)
Nhưng bài kia vẫn được nửa số điểm đấy

 

Đc nửa điểm toàn bài là cùng thôi Hiếu.

 



#23 BlackSelena

BlackSelena

    $\mathbb{Sayonara}$

  • Hiệp sỹ
  • 1549 Bài viết
  • Giới tính:Không khai báo

Đã gửi 02-05-2014 - 23:35

Anou... Hiện tại đã "sơ chấm" xong trận này.

Các em thắc mắc khiếu nại gì thì khẩn trương luôn nhé >w< ~


"I helped rehabilitate a part of the world. If I use this ability, maybe I can even help restore the rest of this depraved world."

#24 buiminhhieu

buiminhhieu

    Thượng úy

  • Thành viên
  • 1150 Bài viết
  • Giới tính:Nam
  • Sở thích:Inequality

Đã gửi 03-05-2014 - 06:21

Bài làm của MSS 13:Bùi Minh Hiếu:

Giải:

Gọi tâm đường tròn nội tiếp tam giác $ABC$ là $I$ ; đường thẳng qua $I$ cắt $BC$ tại $M,N$ là $d$

Xét 2 trường hợp :

TH1: $d$ song song $BC$

Theo định lí $Talet$ ta được:

$\frac{AM}{BM}=\frac{AI}{ID};\frac{AN}{NC}=\frac{AI}{ID}$

$\Rightarrow \frac{AN.AM}{BM.CN}=(\frac{AI}{ID})^{2}$

Lại có $\frac{AI}{ID}=\frac{AB}{BD}=\frac{AC}{CD}=\frac{AB+AC}{CB}$(Do $BI;CI$ là các đường phân giác trong góc $B;C$)

Do đó $\frac{AM.AN}{BM.CN}=(\frac{AB+AC}{BC})^{2}\geq \frac{4AB.AC}{BC^{2}}$(theo $BĐT$ $AM-GM$)

Do đó $\frac{BM.CN}{AM.AN}\leq \frac{BC^{2}}{4AB.AC}$(1)

attachicon.gifUntitled2.png

 

TH2: $MN$ không song song $BC$ Không mất tính tổng quát giả sử $d$ cắt $BC$ tại mặt phẳng bờ $AB$ không chứa $C$ .Gọi giao $d$ với $BC$ là $K$

Áp dụng định lí $Menelaus$ Ta được

$\Delta ABD$ có $K,M,I$ thẳng hàng:$\frac{MA}{MB}=\frac{IA}{ID}.\frac{KD}{KB}$

$\Delta ACD$ có $K,I,N$ thẳng hàng :$\frac{AN}{CN}=\frac{KC}{KD}.\frac{IA}{ID}$

Do đó $\frac{AM.AN}{BM.CN}=(\frac{IA}{ID})^{2}.\frac{KC}{KB}>(\frac{IA}{ID})^{2}$(Do $KC>KB$ theo điều giả sử)

$=(\frac{AB+AC}{BC})^{2}\geq \frac{4AB.AC}{BC^{2}}$

$\rightarrow \frac{BM.CN}{AM.AN}< \frac{BC^{2}}{4AB.CA}$(2)

attachicon.gifUntitled.png

Từ (1) và (2) ta được

$\frac{BM.CN}{AM.AN}\leq \frac{BC^{2}}{4AB.AC}$

Dấu "=" khi $AB=AC$ và $MN$ song song $BC$

Vậy $\frac{BM.CN}{AM.AN}\leq \frac{BC^{2}}{4AB.AC}$

Dấu"=" khi ...

p/s:Ảo tung chảo

_______
Kể cả khi sửa bài làm vẫn sai...

d = 4

S = 13.3

Có sai đâu anh:

 

 

 

Cho em sửa :

$\Delta ABD$ có $K,M,I$ thẳng hàng:$\frac{MA}{MB}=\frac{IA}{ID}.\frac{KD}{KB}$

$\Delta ACD$ có $K,I,N$ thẳng hàng :$\frac{AN}{CN}=\frac{KD}{KC}.\frac{IA}{ID}$

Từ đó :

$\frac{AM.AN}{BM.CN}=\frac{KD^{2}}{KB.KC}.(\frac{IA}{ID})^{2}=\frac{KD^{2}}{KB.KC}.(\frac{AB+AC}{CB})^{2}$

Đặt $KB=x;BD=y;DC=z$ Khi đó:

$\frac{AM.AN}{BM.CN}=\frac{KD^{2}}{KB.KC}.\frac{(AB+AC)^{2}}{BC^{2}}$

$=\frac{(AB+AC)^{2}.(x+y)^{2}}{(x+y+z)x.BC^{2}}$

Suy ra ĐPCM$\Leftrightarrow (AB+AC)^{2}(x+y)^{2}\geq 4(x+y+z)x.AB.AC$

$\Leftrightarrow (\frac{AB}{AC}+1)^{2}(x+y)^{2}\geq 4(x+y+z)x\frac{AB}{AC}$

Mà $\frac{AB}{AC}=\frac{y}{z}\Rightarrow$

BĐT$\Leftrightarrow$$(y+z)^{2}(x+y)^{2}\geq 4xz(y^{2}+yx+yz)\Leftrightarrow (y^{2}+xy+yz-zx)^{2}\geq 0$(LĐ)

Dấu "="không xảy ra

File gửi kèm  Untitled4.png   111.07K   0 Số lần tải


%%- Chuyên Vĩnh Phúc

6cool_what.gif






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh