Đến nội dung


Thông báo

Thời gian vừa qua do diễn đàn gặp một số vấn đề về kĩ thuật nên thỉnh thoảng không truy cập được, mong các bạn thông cảm. Hiện nay vấn đề này đã được giải quyết triệt để. Nếu các bạn gặp lỗi trong lúc sử dụng diễn đàn, xin vui lòng thông báo cho Ban Quản Trị.


Hình ảnh

$\lim_{x\to 0}\frac{1}{\sin^4 x}\left(\sin\left(\frac{x}{1+x}\right)-...\right)$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 T*genie*

T*genie*

    Đường xa nặng bóng ngựa lười...

  • Quản trị
  • 1157 Bài viết
  • Giới tính:Nam
  • Đến từ:Paris
  • Sở thích:Maths & Girls

Đã gửi 12-05-2014 - 06:18

Lâu rồi không đụng đến lim gụ có bài toán mình muốn nhờ các bạn xem giúp :D

 

Tính $$\lim_{x \to 0} \frac{1}{\sin^4 x}\left(\sin\left(\frac{x}{1+x}\right)-\frac{\sin x}{1+ \sin x}\right)$$

 

Cám ơn các bạn.



#2 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1657 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 12-11-2017 - 12:49

Lâu rồi không đụng đến lim gụ có bài toán mình muốn nhờ các bạn xem giúp :D

 

Tính $$\lim_{x \to 0} \frac{1}{\sin^4 x}\left(\sin\left(\frac{x}{1+x}\right)-\frac{\sin x}{1+ \sin x}\right)$$

 

Cám ơn các bạn.

 

Ta có các khai triển sau

  • $\sin\left(\frac{x}{1+x}\right)=\left(\frac{x}{1+x}\right)-\frac{1}{6}\left(\left(\frac{x}{1+x}\right)^3\right)+\text{o}\left(\frac{x}{1+x}\right)^3,$
  • $\frac{\sin x}{1+ \sin x}=\sin x \left(1-\sin x+\sin^2 x+\sin^3 x\right) ++\text{o}\left(\sin^4{x}\right)$.

Vì $x$, $\frac{x}{x+1}$ và $\sin x$ là các đại lượng vô cùng bé tương đương khi $x\to 0$ nên

  • $\sin\left(\frac{x}{1+x}\right)= x \left(1-x+x^2-x^3\right)-\frac{x^3}{6}\left(1-x\right)^3+\text{o}\left(x^4\right)=x-x^2+\frac{5}{6}x^3-\frac{1}{2}x^4+\text{o}\left(x^4\right),$
  • $\frac{\sin x}{1+ \sin x}=\sin x \left(1-\sin x+\sin^2 x+\sin^3 x\right) +\text{o}\left(\sin^4{x}\right)=\left(x-\frac{x^3}{6}\right)\left[ 1-\left(x-\frac{x^3}{6}\right)+\left(x-\frac{x^3}{6}\right)^2-\left(x-\frac{x^3}{6}\right)^3\right]=x-x^2+\frac{5}{6}x^3-\frac{2}{3}x^4+\text{o}\left(x^4\right)$.
  • $\sin^4 x= x^4+\text{o}(x^4).$

 

Do đó, 

$$\lim_{x \to 0} \frac{1}{\sin^4 x}\left(\sin\left(\frac{x}{1+x}\right)-\frac{\sin x}{1+ \sin x}\right)= \frac{1}{x^4} \left( -x^2+\frac{5}{6}x^3-\frac{1}{2}x^4-\left( x-x^2+\frac{5}{6}x^3-\frac{2}{3}x^4\right)\right)=\frac{1}{6}.$$


Bài viết đã được chỉnh sửa nội dung bởi An Infinitesimal: 13-11-2017 - 22:56

Đời người là một hành trình...


#3 WhjteShadow

WhjteShadow

    Thượng úy

  • Phó Quản trị
  • 1309 Bài viết
  • Giới tính:Nam

Đã gửi 25-11-2017 - 07:42

Ta có các khai triển sau

  • $\sin\left(\frac{x}{1+x}\right)=\left(\frac{x}{1+x}\right)-\frac{1}{6}\left(\left(\frac{x}{1+x}\right)^3\right)+\text{o}\left(\frac{x}{1+x}\right)^3,$
  • $\frac{\sin x}{1+ \sin x}=\sin x \left(1-\sin x+\sin^2 x+\sin^3 x\right) ++\text{o}\left(\sin^4{x}\right)$.

Vì $x$, $\frac{x}{x+1}$ và $\sin x$ là các đại lượng vô cùng bé tương đương khi $x\to 0$ nên

  • $\sin\left(\frac{x}{1+x}\right)= x \left(1-x+x^2-x^3\right)-\frac{x^3}{6}\left(1-x\right)^3+\text{o}\left(x^4\right)=x-x^2+\frac{5}{6}x^3-\frac{1}{2}x^4+\text{o}\left(x^4\right),$
  • $\frac{\sin x}{1+ \sin x}=\sin x \left(1-\sin x+\sin^2 x+\sin^3 x\right) +\text{o}\left(\sin^4{x}\right)=\left(x-\frac{x^3}{6}\right)\left[ 1-\left(x-\frac{x^3}{6}\right)+\left(x-\frac{x^3}{6}\right)^2-\left(x-\frac{x^3}{6}\right)^3\right]=x-x^2+\frac{5}{6}x^3-\frac{2}{3}x^4+\text{o}\left(x^4\right)$.
  • $\sin^4 x= x^4+\text{o}(x^4).$

 

Do đó, 

$$\lim_{x \to 0} \frac{1}{\sin^4 x}\left(\sin\left(\frac{x}{1+x}\right)-\frac{\sin x}{1+ \sin x}\right)= \frac{1}{x^4} \left( -x^2+\frac{5}{6}x^3-\frac{1}{2}x^4-\left( x-x^2+\frac{5}{6}x^3-\frac{2}{3}x^4\right)\right)=\frac{1}{6}.$$

Bài làm của bạn chuẩn xác rồi ạ, +10 điểm PSW.


$$n! \sim \sqrt{2\pi n} \left(\dfrac{n}{e}\right)^n$$

 

“We can only see a short distance ahead, but we can see plenty there that needs to be done.” - Alan Turing





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh