Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Trận 10 - Bất đẳng thức

mhs 2014

  • Please log in to reply
Chủ đề này có 25 trả lời

#21 motdaica

motdaica

    Hạ sĩ

  • Thành viên
  • 50 Bài viết
  • Giới tính:Nam
  • Đến từ:hà nội
  • Sở thích:toán học,VMO,lịch sử

Đã gửi 26-05-2014 - 11:00

Ta có:

$\frac{1}{x^3(yz+zt+ty)}+\frac{1}{9y}+\frac{1}{9z}+\frac{1}{9t}$

$= \frac{xyzt}{x^3(yz+zt+ty)}+\frac{yz+zt+ty}{9yzt}$     (với xyzt=1)

$= \frac{yzt}{x^2(yz+zt+ty)}+\frac{yz+zt+ty}{9yzt}\geq 2\sqrt{\frac{1}{9x^2}}$    =$\frac{2}{3x}$         (theo BĐTCô-si)

$\Leftrightarrow \frac{1}{x^3(yz+zt+ty)}\geq \frac{2}{3x}-(\frac{1}{9y}+\frac{1}{9z}+\frac{1}{9t})$

Tương tự ta có:

$\Leftrightarrow \frac{1}{y^3(xz+zt+tx)}\geq \frac{2}{3y}-(\frac{1}{9x}+\frac{1}{9z}+\frac{1}{9t})$

$\Leftrightarrow \frac{1}{z^3(yx+zt+tx)}\geq \frac{2}{3z}-(\frac{1}{9y}+\frac{1}{9x}+\frac{1}{9t})$

$\Leftrightarrow \frac{1}{t^3(yz+zx+xy)}\geq \frac{2}{3t}-(\frac{1}{9y}+\frac{1}{9z}+\frac{1}{9x})$

Khi đó:

$ \frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq (\frac{2}{3x}+\frac{2}{3y}+\frac{2}{3z} +\frac{2}{3t})-(\frac{1}{3x}+\frac{1}{3y}+\frac{1}{3z}+\frac{1}{3t})$$= \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t})\geq \frac{4}{3}\sqrt[4]{\frac{1}{xyzt}}=\frac{4}{3}$

vậy $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3}$

trường hợp dấu bằng xảy ra đâu bạn :icon6: thiếu này



#22 hoangson2598

hoangson2598

    Sĩ quan

  • Thành viên
  • 325 Bài viết
  • Giới tính:Nam
  • Đến từ:Kinh Môn - Hải Dương
  • Sở thích:học toán và chơi thể thao
    →♡Math♡←

Đã gửi 26-05-2014 - 22:04

 

 

Bài làm của thí sinh $MHS09$

Giải.

Đặt $S=\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}$, ta có:

$\frac{1}{x^3(yz+zt+ty)}=\frac{1}{x^3yzt(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}=\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}$ (Do $xyzt=1$)

Tương tự:

$$\left\{\begin{matrix} \frac{1}{y^3(xz+zt+tx)}=\frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}\\ \frac{1}{z^3(yx+xt+ty)}=\frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}\\ \frac{1}{t^3(yz+zx+xy)}=\frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})} \end{matrix}\right.$$

Mặt khác, ta có: $\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}\geq 2\sqrt{\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}.\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}}=\frac{2}{3x}$ (bất đẳng thức $Cauchy$)

Tương tự: $$\left\{\begin{matrix} \frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{x}+\frac{1}{z}+\frac{1}{t}}{9}\geq \frac{2}{3y}\\ \frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{x}+\frac{1}{t}}{9}\geq \frac{2}{3z}\\ \frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{x}}{9}\geq \frac{2}{3t} \end{matrix}\right.$$

Cộng theo vế, ta được: $S+\frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\geq \frac{2}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\\ \Leftrightarrow S\geq \frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )$

Áp dụng bất đẳng thức $Cauchy$ cho bốn số dương, ta có: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq \frac{4}{\sqrt[4]{xyzt}}=4$

Suy ra $S\geq \frac{4}{3}$

Vậy $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3},$ $\forall x,y,z,t> 0; xyzt=1$

P/s: Em may quá mấy bác ạ, trúng tủ  :icon6: 

 

Vừa may mà cũng vừa không may

Ban trúng đề nhưng lại trúng vào cái TH đơn giản của bài toán tổng quát. Mình tin nếu bạn không trúng đề thì bạn sẽ có cách làm ngắn gọn hơn.


                  :like  :like  :like  :like  :like  Thằng đần nào cũng có thể biết. Vấn đề là phải hiểu.    :like  :like  :like  :like  :like 

                                                                    

                                                                       Albert Einstein

 

                                        :icon6: My Facebookhttps://www.facebook...100009463246438  :icon6:


#23 phamquanglam

phamquanglam

    Sĩ quan

  • Thành viên
  • 377 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Phúc Thành - Kinh Môn - Hải Dương
  • Sở thích:Toán, Hóa, Sinh, Badminton

Đã gửi 28-05-2014 - 11:24

Mình không phải toán thủ thi đấu!

Áp dụng AM-GM:

$\frac{1}{x^{3}(yz+zt+ty)}+\frac{x(yz+zt+ty)}{9}\geq \frac{2}{3x}$

$\Rightarrow \frac{1}{x^{3}(yz+zt+ty)}\geq \frac{2}{3x}-\frac{xyz+xzt+xty}{9}$

Làm tương tự cho y,z,t

Cộng các vế vào ta được:

$\sum \frac{1}{x^{3}(yz+zt+ty)}\geq \sum \frac{2}{3x}-\frac{xyz+xyt+xzt+yzt}{3}$$= \frac{1}{3}(xyz+xyt+xzt+yzt)\geq \frac{1}{3}.4.\sqrt[4]{(xyzt)^{3}}= \frac{4}{3}$

Dấu "=" xảy ra: x=y=z=1


:B) THPT PHÚC THÀNH K98  :B) 

 

Cuộc sống luôn không ngừng đổi thay, chỉ có tình yêu là luôn ở đó, vẹn tròn và bất diệt. Chính vì thế tôi thay đổi để giữ điều ấy, để tốt hơn từng ngày

Thay đổi cho những điều không bao giờ đổi thay

 

Học toán trên facebook:https://www.facebook...48726405234293/

My facebook:https://www.facebook...amHongQuangNgoc

:off:  :off:  :off:


#24 motdaica

motdaica

    Hạ sĩ

  • Thành viên
  • 50 Bài viết
  • Giới tính:Nam
  • Đến từ:hà nội
  • Sở thích:toán học,VMO,lịch sử

Đã gửi 17-06-2014 - 00:06

Lâu chưa chấm với cả tổng kết quá :huh: :mellow:



#25 NMDuc98

NMDuc98

    Sĩ quan

  • Thành viên
  • 314 Bài viết
  • Giới tính:Nam
  • Đến từ:K10A - THPT Lê Quảng Chí (Hà Tĩnh)
  • Sở thích:Toán Học

Đã gửi 19-06-2014 - 21:34

Bài làm của thí sinh $MHS09$

Giải.

Đặt $S=\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}$, ta có:

$\frac{1}{x^3(yz+zt+ty)}=\frac{1}{x^3yzt(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}=\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}$ (Do $xyzt=1$)

Tương tự:

$$\left\{\begin{matrix} \frac{1}{y^3(xz+zt+tx)}=\frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}\\ \frac{1}{z^3(yx+xt+ty)}=\frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}\\ \frac{1}{t^3(yz+zx+xy)}=\frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})} \end{matrix}\right.$$

Mặt khác, ta có: $\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}\geq 2\sqrt{\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}.\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}}=\frac{2}{3x}$ (bất đẳng thức $Cauchy$)

Tương tự: $$\left\{\begin{matrix} \frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{x}+\frac{1}{z}+\frac{1}{t}}{9}\geq \frac{2}{3y}\\ \frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{x}+\frac{1}{t}}{9}\geq \frac{2}{3z}\\ \frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{x}}{9}\geq \frac{2}{3t} \end{matrix}\right.$$

Cộng theo vế, ta được: $S+\frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\geq \frac{2}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\\ \Leftrightarrow S\geq \frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )$

Áp dụng bất đẳng thức $Cauchy$ cho bốn số dương, ta có: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq \frac{4}{\sqrt[4]{xyzt}}=4$

Suy ra $S\geq \frac{4}{3}$

Vậy $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3},$ $\forall x,y,z,t> 0; xyzt=1$

P/s: Em may quá mấy bác ạ, trúng tủ  :icon6: 

Bài giải này khá dài!Cần đặt ẩn để ngắn gọn hơn! 


Nguyễn Minh Đức

Lặng Lẽ

THPT Lê Quảng Chí (Hà Tĩnh)


#26 NMDuc98

NMDuc98

    Sĩ quan

  • Thành viên
  • 314 Bài viết
  • Giới tính:Nam
  • Đến từ:K10A - THPT Lê Quảng Chí (Hà Tĩnh)
  • Sở thích:Toán Học

Đã gửi 19-06-2014 - 21:35

Đa số thành viên tham gia đều giải đúng theo ý tưởng mình gửi lên!Chỉ phụ thuộc vào phần trình bày có hay và súc tích không mà thôi! :ukliam2:


Nguyễn Minh Đức

Lặng Lẽ

THPT Lê Quảng Chí (Hà Tĩnh)






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh