Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Đường tròn đường kính AB có M thuộc đường tròn. Tiếp tuyến của (O) ở A và M cắt nhau ở C

hình học

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Mai Pham

Mai Pham

    Trung sĩ

  • Thành viên
  • 106 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT chuyên Lam Sơn

Đã gửi 24-05-2014 - 14:59

Đường tròn đường kính AB có M thuộc đường tròn. Tiếp tuyến của (O) ở A và M cắt nhau ở C. Đường tròn (I) đi qua M tiếp xúc AC ở C. CD là đường kình của (I). DH vuông góc với BC (H thuộc BC). DH cắt AB ở K. CO cắt (I) ở N

a, O, M, D thẳng hàng

b, tam giác COD cân

c, Tứ giác NHOK nội tiếp

d, $\Delta DHN\sim \Delta COB$

e, $\Delta NHO\sim \Delta DHC$

f, K là trung điểm OA


Bài viết đã được chỉnh sửa nội dung bởi Mai Pham: 24-05-2014 - 15:00


#2 Pham Le Yen Nhi

Pham Le Yen Nhi

    Hạ sĩ

  • Thành viên
  • 98 Bài viết
  • Giới tính:Nữ

Đã gửi 24-05-2014 - 22:34

Đường tròn đường kính AB có M thuộc đường tròn. Tiếp tuyến của (O) ở A và M cắt nhau ở C. Đường tròn (I) đi qua M tiếp xúc AC ở C. CD là đường kình của (I). DH vuông góc với BC (H thuộc BC). DH cắt AB ở K. CO cắt (I) ở N

a, O, M, D thẳng hàng

b, tam giác COD cân

c, Tứ giác NHOK nội tiếp

d, $\Delta DHN\sim \Delta COB$

e, $\Delta NHO\sim \Delta DHC$

f, K là trung điểm OA

a) $CM$ vuông góc với $MD$, $CM$ vuông góc với $MO$ nên $O,M,D$ thẳng hàng.

b) Dễ thấy $CD//AB \Rightarrow \angle DCO=\angle COA=\angle DOC \Rightarrow \Delta COD$ cân tại $D$

c) Ta có tứ giác $CDHN$ nội tiếp nên $\angle HNO=\angle CDH=\angle HKO\Rightarrow KNHO$ là tứ giác nội tiếp

d) $\angle HND=\angle HCN=\angle CBO, \angle NDH=\angle OCB$

$\Rightarrow \Delta DHN\sim \Delta COB (g-g)\Rightarrow \frac{HN}{HD}=\frac{OB}{OC}$ (1)

e) Dễ dàng cm được $\Delta AOC \sim \Delta NCD \Rightarrow \frac{OA}{OC}=\frac{CN}{CD}$ (2)

Từ (1) và (2) ta có $\frac{HN}{HD}=\frac{ON}{CD}(OA=OB, CN=ON)$

Do đó $\Delta NHO \sim \Delta DHC (cgc)$

f) Ta có $\angle NHO =\angle DHC=90^{\circ},\angle NKO +\angle NHO =180^{\circ}\Rightarrow \angle NKO=90^{\circ}$

Xét $\Delta AOC , NK//AC,NO=CN\Rightarrow KA=KO\Rightarrow đpcm$

p/s: bạn tự vẽ hình nhé :))


Bài viết đã được chỉnh sửa nội dung bởi Pham Le Yen Nhi: 24-05-2014 - 22:35






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: hình học

0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh