Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CMR $\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\geq \frac{1}{4}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Ngoc Hung

Ngoc Hung

    Đại úy

  • Thành viên
  • 1547 Bài viết
  • Giới tính:Nam
  • Đến từ:Đức Thọ - Hà Tĩnh
  • Sở thích:Toán học và thơ

Đã gửi 24-05-2014 - 17:39

Cho a, b, c > 0 và a + b + c = 1. CMR $\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\geq \frac{1}{4}$



#2 Pham Le Yen Nhi

Pham Le Yen Nhi

    Hạ sĩ

  • Thành viên
  • 98 Bài viết
  • Giới tính:Nữ

Đã gửi 24-05-2014 - 17:50

Cho a, b, c > 0 và a + b + c = 1. CMR $\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\geq \frac{1}{4}$

Chắc bài này là dấu "$\leq$" :))

Ta có $a+b+c=1$ nên $\frac{ab}{c+1}=\frac{ab}{(a+c)+(b+c)}\leq \frac{ab}{4}(\frac{1}{a+c}+\frac{1}{b+c})$

Tương tự với $\frac{bc}{a+1}\leq \frac{bc}{4}(\frac{1}{a+b}+\frac{1}{a+c})$

$\frac{ca}{b+1}\leq \frac{ca}{4}(\frac{1}{c+b}+\frac{1}{b+a})$

$\Rightarrow \frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\leq \frac{1}{4}(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b})=\frac{1}{4}$

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$


Bài viết đã được chỉnh sửa nội dung bởi Pham Le Yen Nhi: 24-05-2014 - 17:51





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh