Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh $A,E,L$ thẳng hàng

hình học

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1536 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 24-05-2014 - 20:14

Cho tam giác $ABC$ nội tiếp $(O)$ . Kẻ $EF || BC$ và $EF$ nằm trên cung $BC$ không có $A$ sao cho $AE$ nằm giữa $AB$ và $AF$ . Gọi $H$ là trực tam giác $ABC$ . Kéo dài $FH$ cắt $(O)$ ở $G$ . Gọi $L$ là tam đường tròn ngoại tiếp tam giác $AGH$ . 
a) Chứng minh $A,L,E$ thẳng hàng .
b) Giả sử $(L)$ cắt $AB,AC$ ở $N,M$ . Chứng minh $MN$ vuông góc với $AF$
c) Giả sử $MN$ cắt $AF$ tại $P$ . Gọi $K$ là điểm nằm trên $(L)$ mà $AH$ vuông góc với $KH$ tại $H$ . 
Cho $GH$ cắt $MN$ tại $Q$ và $AQ$ cắt $(O)$ tại $R$ . Chứng minh rằng đường thẳng qua $R$ vuông góc $AF$ và $GP$ giao nhau tại 1 điểm trên $(O)$
:icon6:

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#2 stronger steps 99

stronger steps 99

    Hạ sĩ

  • Thành viên
  • 51 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Toán học,các loại nhạc:US-UK,K-POP,J-POP,...

Đã gửi 24-05-2014 - 21:18

 

Cho tam giác $ABC$ nội tiếp $(O)$ . Kẻ $EF || BC$ và $EF$ nằm trên cung $BC$ không có $A$ sao cho $AE$ nằm giữa $AB$ và $AF$ . Gọi $H$ là trực tam giác $ABC$ . Kéo dài $FH$ cắt $(O)$ ở $G$ . Gọi $L$ là tam đường tròn ngoại tiếp tam giác $AGH$ . 
a) Chứng minh $A,L,E$ thẳng hàng .

 

Gọi đường trung trực của AG $\cap$ AE tại K.$\rightarrow \Delta KAG$ cân tại K$\rightarrow 2\widehat{GAK}+\widehat{AKG}=90^{\circ}$(1)

Do AH vuông góc với BC nên AH vuông góc với EF

$\rightarrow \widehat{FEA}+\widehat{HAE}=90^{\circ}\rightarrow \widehat{HAE}+\widehat{AGH}=90^{\circ}\rightarrow \widehat{KAE}+\widehat{AGH}=90^{\circ}$

Xét $\Delta$AGH có: $\widehat{GAK}+\widehat{GHA}=90^{\circ}$ kết hợp với (1) $\rightarrow \widehat{GKA}=2\widehat{GHA}$

TỪ ĐÓ TA CÓ ĐPCM


  :like Do not worry about your difficulties in Mathematics. I can assure you mine are still greater. :like

                                               :nav: Ghé Thăm My Facebook tại đây.  :nav:

 


#3 stronger steps 99

stronger steps 99

    Hạ sĩ

  • Thành viên
  • 51 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Toán học,các loại nhạc:US-UK,K-POP,J-POP,...

Đã gửi 24-05-2014 - 21:43

 

Cho tam giác $ABC$ nội tiếp $(O)$ . Kẻ $EF || BC$ và $EF$ nằm trên cung $BC$ không có $A$ sao cho $AE$ nằm giữa $AB$ và $AF$ . Gọi $H$ là trực tam giác $ABC$ . Kéo dài $FH$ cắt $(O)$ ở $G$ . Gọi $L$ là tam đường tròn ngoại tiếp tam giác $AGH$ . 
 
b) Giả sử $(L)$ cắt $AB,AC$ ở $N,M$ . Chứng minh $MN$ vuông góc với $AF$
:icon6:

 

Gọi BP là đường cao của $\Delta ABC\rightarrow \widehat{PHM}+\widehat{HPM}=90^{\circ}\rightarrow \widehat{PHM}+\widehat{HGA}=90^{\circ}$ MÀ THEO PHẦN A TA CÓ:$\widehat{HAK}+\widehat{AGH}=90^{\circ}$$\rightarrow \widehat{MHP}=\widehat{HAK}$

Do EF song song với BC nên cung BF =cung CE$\rightarrow$$ \widehat{BAF}= \widehat{KAC}$

$\fn_cm \rightarrow \widehat{BAF}+\widehat{ANM}=\widehat{KAC}+\widehat{AHM}=\widehat{HAM}+\widehat{AHM}=90^{\circ}\rightarrow $ĐPCM


Bài viết đã được chỉnh sửa nội dung bởi stronger steps 99: 24-05-2014 - 21:47

  :like Do not worry about your difficulties in Mathematics. I can assure you mine are still greater. :like

                                               :nav: Ghé Thăm My Facebook tại đây.  :nav:

 






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh