Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

ĐỀ THI TUYỂN SINH THPT CHUYÊN Đại Học Sư Phạm Hà Nội năm 2014

trường đại học sư phạm hà nội đề thi tuuyển sinh

  • Please log in to reply
Chủ đề này có 58 trả lời

#21 Yagami Raito

Yagami Raito

    Master Tetsuya

  • Thành viên
  • 1333 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:$\mathbb{THPT Chuyên Phan Bội Châu}$ $\\$

Đã gửi 06-06-2014 - 18:45

Bài 4. Ta chú ý tới bài toán quen thuộc $a,b,c>0$ thỏa mãn $abc=1$ thì $\dfrac{1}{ab+a+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{ca+c+1}=1$

Chứng minh: $\dfrac{1}{ab+a+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{ca+c+1}=\dfrac{abc}{ab+a+abc}+\dfrac{1}{bc+b+1}+\dfrac{b}{bca+bc+b}$

$=\dfrac{bc}{b+1+bc}+\dfrac{1}{bc+b+1}+\dfrac{b}{1+bc+1}=1$(đpcm)

 

Trở lại bài toán, ta có $\sum \dfrac{1}{ab+a+2}=\sum \dfrac{3}{3(ab+a+1)+3}=\sum \dfrac{3}{16}.\dfrac{16}{3(ab+a+1)+3} \leq \sum \dfrac{3}{16}(\dfrac{3}{ab+a+1}+\dfrac{1}{3})=\dfrac{3}{16}.(\sum \dfrac{3}{ab+a+1})+\dfrac{3}{16}=\dfrac{9}{16}+\dfrac{3}{16}=\dfrac{12}{16}=\dfrac{3}{4}$ (đpcm)

 

Dấu bằng xảy ra khi $a=b=c=1$


Bài viết đã được chỉnh sửa nội dung bởi Yagami Raito: 06-06-2014 - 18:49

:nav: Học gõ công thức toán học tại đây

:nav: Hướng dẫn đặt tiêu đề tại đây

:nav: Hướng dẫn Vẽ hình trên diễn đàn toán tại đây

--------------------------------------------------------------

 


#22 BysLyl

BysLyl

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nữ

Đã gửi 06-06-2014 - 19:05

ai làm bài 3 đi, mình cũng làm quy nạp xong rồi không ra. Có ai làm hết không?? :((

2) ĐKXĐ:...

Áp dụng Cô-si:

$x^{2}+1-y^{2}\geq \left | x \right |\sqrt{1-y^{2}}\geq x\sqrt{1-y^{2}}; y^{2}+2-z^{2}\geq \left | y \right |\sqrt{2-z^{2}}\geq y\sqrt{2-z^{2}};z^{2}+3-x^{2}\geq \left | z \right |\sqrt{3-x^{2}}\geq z\sqrt{3-x^{2}}$

Dấu "=" ...

P/s: quá ngusidandon khi không biết dùng HĐT


_Be your self- Live your life_  :rolleyes: 


#23 Yagami Raito

Yagami Raito

    Master Tetsuya

  • Thành viên
  • 1333 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:$\mathbb{THPT Chuyên Phan Bội Châu}$ $\\$

Đã gửi 06-06-2014 - 19:16

Không khó :P

Bài 3 Ta có

$a_{n}=1+\dfrac{2^{n}.(1.3.5...(2n-1).[(n+4)!]}{(2n)!}$

$=1+\dfrac{2^{n}.[(n+4)!]}{2.4.6....2n}$

$=1+\dfrac{(n+4)!}{n!}$

$=1+(n+1)(n+2)(n+3)(n+4)=(n^2+5n+5)^2$ (đpcm)


:nav: Học gõ công thức toán học tại đây

:nav: Hướng dẫn đặt tiêu đề tại đây

:nav: Hướng dẫn Vẽ hình trên diễn đàn toán tại đây

--------------------------------------------------------------

 


#24 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1560 Bài viết
  • Giới tính:Không khai báo
  • Sở thích:Being and Algebraic Geometry

Đã gửi 06-06-2014 - 19:30

$1/$

Đặt $x/a=m;y/b=n;z/c=p$
$\Rightarrow m+n+p=1$
Có:
$1/m+1/n+1/p=0\Leftrightarrow mn+np+pn=0$
Từ đó $m^2+n^2+p^2=(m+n+p)^2-2(mn+np+pm)=1-2.0=1$

----
$2/$
$x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\leq \frac{x^2+1-y^2}{2}+\frac{y^2+2-z^2}{2}+\frac{z^2+3-x^2}{2}=3$

Dấu = có khi $\left\{\begin{matrix}x=\sqrt{1-y^2} & & \\ y=\sqrt{2-z^2} & & \\ z=\sqrt{3-x^2} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x^2+y^2=1 & & \\ y^2+z^2=2 & & \\ z^2+x^2=3 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}2(x^2+y^2+z^2)=6 & & \\ x^2+y^2=1 & & \\ y^2+z^2=2 \\ z^2+x^2=3 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x^2=1 & & \\ y^2=0 & & \\ z^2=2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x=\pm 1 & & \\ y=0 & & \\ z=\pm \sqrt{2} \end{matrix}\right.$
Kết hợp ĐKXĐ để tìm $(x;y;z)$

chỉ lấy nghiệm dương thôi 

Không liên quan nhưng các bạn làm chuyên thế nào , có mấy bác full mà còn ra sớm 30p


Bài viết đã được chỉnh sửa nội dung bởi bangbang1412: 06-06-2014 - 20:35

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#25 Zaraki

Zaraki

    PQT

  • Phó Quản trị
  • 4265 Bài viết
  • Giới tính:Nam
  • Đến từ:Đảo mộng mơ.
  • Sở thích:Mathematics, Manga

Đã gửi 06-06-2014 - 21:36

Câu cuối chuông reo thì mới nghĩ ra ý tưởng cho bài 6, tiếc là cô giám thị đứng ngay cạnh mình.
Gọi $x,y$ là hai phần tử thuộc tập $A$ và $x>y$. Khi đó theo giả thiết thì $\frac{y^2}{x-y}$.
+) Dễ chứng minh $\frac{y^2}{x-y} \ne x$ và $\frac{y^2}{x-y}=y \Leftrightarrow x=2y$.
+) Nếu có hai phần tử $x,y \in A$ mà $x \ne 2y$ thì luôn tồn tại số $k \in A$ khác $x,y$. Khi đó tập $A$ có vô số phần tử, mâu thuẫn với việc $A$ là tập con của $\{ 1;2;3; \cdots ; 2014 \}$.
+) Vậy tập $A$ chỉ có $2$ phần tử dạng $k;2k$.

Bài viết đã được chỉnh sửa nội dung bởi Jinbe: 06-06-2014 - 21:39

“A man's dream will never end!” - Marshall D. Teach.

#26 mnguyen99

mnguyen99

    Thiếu úy

  • Thành viên
  • 696 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên toán ,THPT chuyên Quốc Học Huế
  • Sở thích:Sherlock Holmes, người đàn ông chưa bao giờ sống và không bao giờ chết.

Đã gửi 06-06-2014 - 22:04

Câu cuối chuông reo thì mới nghĩ ra ý tưởng cho bài 6, tiếc là cô giám thị đứng ngay cạnh mình.
Gọi $x,y$ là hai phần tử thuộc tập $A$ và $x>y$. Khi đó theo giả thiết thì $\frac{y^2}{x-y}$.
+) Dễ chứng minh $\frac{y^2}{x-y} \ne x$ và $\frac{y^2}{x-y}=y \Leftrightarrow x=2y$.
+) Nếu có hai phần tử $x,y \in A$ mà $x \ne 2y$ thì luôn tồn tại số $k \in A$ khác $x,y$. Khi đó tập $A$ có vô số phần tử, mâu thuẫn với việc $A$ là tập con của $\{ 1;2;3; \cdots ; 2014 \}$.
+) Vậy tập $A$ chỉ có $2$ phần tử dạng $k;2k$.

Thử giải thích câu này với


THCS NGUYỄN DUY,PHONG ĐIỀN$\Rightarrow$THPT CHUYÊN QUỐC HỌC HUẾ$\Rightarrow$??? 

 

TẬP LÀM THÁM TỬ TẠI ĐÂY http://diendantoanho...ám/#entry513026


#27 Christian Goldbach

Christian Goldbach

    Sĩ quan

  • Thành viên
  • 351 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên đại học Sư Phạm Hà Nội
  • Sở thích:nhiều lắm!!!

Đã gửi 06-06-2014 - 22:30

Không khó :P

Bài 3 Ta có

$a_{n}=1+\dfrac{2^{n}.(1.3.5...(2n-1).[(n+4)!]}{(2n)!}$

$=1+\dfrac{2^{n}.[(n+4)!]}{2.4.6....2n}$

$=1+\dfrac{(n+4)!}{n!}$

$=1+(n+1)(n+2)(n+3)(n+4)=(n^2+5n+5)^2$ (đpcm)

Mình làm quy nạp cũng ra như bạn!


Quy luật của toán học càng liên hệ tới thực tế càng không chắc chắn, và càng chắc chắn thì càng ít liên hệ tới thực tế.

 


#28 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1560 Bài viết
  • Giới tính:Không khai báo
  • Sở thích:Being and Algebraic Geometry

Đã gửi 06-06-2014 - 22:32

Thử giải thích câu này với

Giả sử tập $A$ có hữu hạn phần tử mà không có 2 số nào thỏa $x=2y$ , khi đó các phần tử cứ khác nhau mãi mãi dẫn đến $A$ có vô hạn ( =)) )


Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#29 I Am Gifted So Are You

I Am Gifted So Are You

    Binh nhất

  • Thành viên
  • 42 Bài viết
  • Giới tính:Nam
  • Đến từ:Tương lai
  • Sở thích:Xem phim hoạt hình và nghe nhạc
    Các thể loại yêu thích : soul, pop, vv..

Đã gửi 07-06-2014 - 03:00

Bài hình ý b theo mình từ câu a suy ra $\bigtriangleup DOP~\bigtriangleup ONP(c.g.c)$ nên OD là tiếp tuyến của $(O;N;P)$ mà $OD\top OC$ nên tâm $(O,N,P)$ trên Oc



#30 Zaraki

Zaraki

    PQT

  • Phó Quản trị
  • 4265 Bài viết
  • Giới tính:Nam
  • Đến từ:Đảo mộng mơ.
  • Sở thích:Mathematics, Manga

Đã gửi 07-06-2014 - 05:34

Mình làm quy nạp cũng ra như bạn!

 
Bạn có thể trình bày cách quy nạp đó được không ?
 

Giả sử tập $A$ có hữu hạn phần tử mà không có 2 số nào thỏa $x=2y$ , khi đó các phần tử cứ khác nhau mãi mãi dẫn đến $A$ có vô hạn ( =)) )

Chỗ tô đậm nên nói là có 2 phần tử mà phần tử lớn không gấp đôi phần tử bé, khi đó mới suy ra đđược $A$ chỉ có 2 phần tử.
“A man's dream will never end!” - Marshall D. Teach.

#31 buiminhhieu

buiminhhieu

    Thượng úy

  • Thành viên
  • 1150 Bài viết
  • Giới tính:Nam
  • Sở thích:Inequality

Đã gửi 07-06-2014 - 06:24

Câu cuối chuông reo thì mới nghĩ ra ý tưởng cho bài 6, tiếc là cô giám thị đứng ngay cạnh mình.
Gọi $x,y$ là hai phần tử thuộc tập $A$ và $x>y$. Khi đó theo giả thiết thì $\frac{y^2}{x-y}$.
+) Dễ chứng minh $\frac{y^2}{x-y} \ne x$ và $\frac{y^2}{x-y}=y \Leftrightarrow x=2y$.
+) Nếu có hai phần tử $x,y \in A$ mà $x \ne 2y$ thì luôn tồn tại số $k \in A$ khác $x,y$. Khi đó tập $A$ có vô số phần tử, mâu thuẫn với việc $A$ là tập con của $\{ 1;2;3; \cdots ; 2014 \}$.
+) Vậy tập $A$ chỉ có $2$ phần tử dạng $k;2k$.

Ê Toàn cái chỗ tô đỏ thì có vẻ đúng nhưng mà nếu cho tập A như sau

$A=\left \{ k;2k;2^{2}.k;2^{3}.k;...;2^{n}k \right \}$ nó vẫn đúng nên không chỉ A có 2 PT

đúng không?

Mà đề hỏi có ? tập A thế thì nhiều phết????soldier_baby3.gif


%%- Chuyên Vĩnh Phúc

6cool_what.gif


#32 BlackSelena

BlackSelena

    $\mathbb{Sayonara}$

  • Hiệp sỹ
  • 1549 Bài viết
  • Giới tính:Không khai báo

Đã gửi 07-06-2014 - 06:49

Ê Toàn cái chỗ tô đỏ thì có vẻ đúng nhưng mà nếu cho tập A như sau

$A=\left \{ k;2k;2^{2}.k;2^{3}.k;...;2^{n}k \right \}$ nó vẫn đúng nên không chỉ A có 2 PT

đúng không?

Mà đề hỏi có ? tập A thế thì nhiều phết????soldier_baby3.gif

Vấn đề là nó sẽ chạy tới vô hạn trong khi tập gốc ban đầu chỉ có hữu hạn 2014 phần tử thôi.


"I helped rehabilitate a part of the world. If I use this ability, maybe I can even help restore the rest of this depraved world."

#33 BysLyl

BysLyl

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nữ

Đã gửi 07-06-2014 - 08:22

attachicon.gifẢnh chụp màn hình_2014-06-06_180159.png

Bài này ai bỏ là phí lắm nhé, lời giải vắn tắt thì như thế này

a, Chú ý có $\triangle BMN \sim \triangle DPA$

Áp ra $OB.OD = DP.BN \Rightarrow.....$.

Cái $\angle PON = 45^\circ$ hiển nhiên rồi nhé.

b, Đường tròn đường kính $PN$ cắt $OC$ tại $I \Rightarrow IPCN:tgnt$

Từ đó dễ có $IP = IN$ và kết hợp $\angle PIN = 2 \angle PON \Rightarrow I$ là tâm $\triangle PON$

c, Cho $MP, AN$ cắt $BD$ tại $X$ và $X'$ rồi chứng minh $\dfrac{XB}{XD} = \dfrac{X'B}{X'D}$ bằng Thales. Nó sẽ tương đương với câu a luôn.

Xin phép anh em mượn cái hình

b)Chứng minh được $\Delta NOP\sim \Delta ODP\Rightarrow \widehat{ONP}=\widehat{DOP}$

=> OD là tiếp tuyến của đường tròn ngoại tiếp tam giác ONP=> OC chứa đường kính=> tâm nằm trên OC


_Be your self- Live your life_  :rolleyes: 


#34 vutuanhien

vutuanhien

    Thiếu úy

  • Điều hành viên Đại học
  • 613 Bài viết
  • Giới tính:Nam
  • Đến từ:Khoa Toán, Trường Đại học Khoa học Tự nhiên, ĐHQGHN

Đã gửi 07-06-2014 - 10:59

 

Mà đề hỏi có ? tập A thế thì nhiều phết????soldier_baby3.gif

Có $1007$ tập A như thế thôi em à


$\sum_{P} I(P, F\cap G)=mn$

 

"The first analogy that came to my mind is of immersing the nut in some softening liquid, and why not simply water? From time to time you rub so the liquid penetrates better, and otherwise you let time pass. The shell becomes more flexible through weeks and months—when the time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!" - Grothendieck


#35 Mr Stoke

Mr Stoke

    Thiếu úy

  • Thành viên
  • 582 Bài viết
  • Giới tính:Nam

Đã gửi 07-06-2014 - 13:15

Gửi tặng các bạn hướng dẫn giải toàn bộ các bài toán

File gửi kèm


Mr Stoke 


#36 quanghung86

quanghung86

    Thiếu úy

  • Điều hành viên
  • 632 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Hình học

Đã gửi 07-06-2014 - 17:41

Các bạn có thể tham khảo bài toán tổng quát và lời giải cho câu hình học ngày 2 ở đây

 

http://analgeomatica...u-pham-nam.html



#37 Viet Hoang 99

Viet Hoang 99

    $\textbf{Trương Việt Hoàng}$

  • Điều hành viên THPT
  • 2289 Bài viết
  • Giới tính:Nam
  • Đến từ:Thái Bình
  • Sở thích:Make more money

Đã gửi 07-06-2014 - 18:35

Mọi người đoán năm nay tầm bn điểm đỗ, nghe con bạn bảo tầm 40đ chuyên toán mà hoảng quá!

35



#38 angleofdarkness

angleofdarkness

    Thượng sĩ

  • Thành viên
  • 246 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:K48 chuyên toán - THPT chuyên ĐHSP Hà Nội.

Đã gửi 07-06-2014 - 18:45

35

  

25 là em tèo rồi -_- chứ nói gì 35



#39 angleofdarkness

angleofdarkness

    Thượng sĩ

  • Thành viên
  • 246 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:K48 chuyên toán - THPT chuyên ĐHSP Hà Nội.

Đã gửi 07-06-2014 - 18:51

tất nhiên là phải chứng minh rồi.

Mình không thi...nếu thi chắc làm được :P

 

HN k cần chứng minh đâu thím :D

 


Bài viết đã được chỉnh sửa nội dung bởi angleofdarkness: 07-06-2014 - 18:52


#40 angleofdarkness

angleofdarkness

    Thượng sĩ

  • Thành viên
  • 246 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:K48 chuyên toán - THPT chuyên ĐHSP Hà Nội.

Đã gửi 07-06-2014 - 18:55

Bạn với Hiếu có nhầm không nhỉ !?

Bởi tam giác $ABK$ vuông tại $K$ có góc $\angle ABK=60^o$ nên : $BK=\frac{AK}{tan(60^o)}=\frac{x}{\sqrt{3}}$ mới đúng chứ nhỉ !?

 

 

c2

ta có $\widehat{ACD}= \widehat{ABD}= 60$

$AD= R\sqrt{3}$

$\Rightarrow DK=\sqrt{3R^{2}-x^{2}}$

lại có

$BK= x\sqrt{3}$

$\Rightarrow BD=x\sqrt{3}+\sqrt{3R^{2}-x^{2}}$

p/s mấy bạn lớp c làm bài thế nào

 

 

 

Xem tại đây

rt.png

a) Xét tứ giác $AKPD$ có $\angle APK=\angle ACB$ (2 góc ở vị trí đồng vị)

mặt khác $\angle ACB =\angle ADK$ (góc nội tiếp cùng chắn cung AB)

$\Rightarrow \angle ADK=\angle APK$ $\Rightarrow $ $ADPK$ là tứ giác nội tiếp.

 

b) Theo câu a) tứ giác $AKPD$ nội tiếp $\Rightarrow \angle APD=\angle AKD=90$ độ 

và $\angle DKP=\angle DAP$

Xét tứ giác $DMPC$ có $\angle DMC=\angle DPC=90$ độ

$\Rightarrow DMPC$ là tứ giác nội tiếp $\Rightarrow \angle PMK=\angle DCA$

mà $\angle DCA+\angle DAC=90$ độ $\angle PMK+\angle PKM=90$ độ

$\Rightarrow KP\perp PM$ (đpcm)

 

c) Ta có 

Xét tam giác ADC vuông tại D có $\angle ACD=\angle ABD=60$ độ nên

    $AD=2R.sin$ $60=R\sqrt{3}$

    $CD=2R.cos$ $60=R$

Xét tam giác vuông $AKB$

   $AB=\dfrac{AK}{sin 60}=\dfrac{2\sqrt{3}x}{3}$

Xét tam giác ABC vuông tại C

    $BC=\sqrt{4R^2-\dfrac{4x^2}{3}}$ 

Từ đây áp dụng định lý Ptolemy cho tứ giác nội tiếp ABCD ta có 

$AC.BD=AD.BC+AB.CD$

$\Leftrightarrow 2R.BD=R\sqrt{3}.\sqrt{4R^2-\dfrac{4x^2}{3}}+\dfrac{2\sqrt{3}x}{3}.R$

$\Leftrightarrow BD=\sqrt{3R^2-x^2}+\frac{x}{\sqrt{3}}$

 

 

Hai thím kia tính sai rồi :v


Bài viết đã được chỉnh sửa nội dung bởi angleofdarkness: 07-06-2014 - 18:59






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: trường đại học sư phạm hà nội, đề thi, tuuyển sinh

0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh