Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

China TST 1986


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 QUANVU

QUANVU

    B&S-D

  • Hiệp sỹ
  • 4378 Bài viết
  • Giới tính:Nam

Đã gửi 15-03-2006 - 09:27

China Team Selection Test 1986

Ngày thứ nhất
Bài 1:$ABCD$ là tứ giác nội tiếp.Chứng minh rằng tâm nội tiếp của các tam giác $ABC,BCD,CDA,DAB$ là các đỉnh của một hình chữ nhật.

Bài 2
:Cho $2n$ số thực $a_1,a_2,...,a_n;b_1,b_2,...,b_n$.Chứng minh rằng hai mệnh đề sau là tương đương:
i) $n$ số thực $s=1,2,...,n-1$ và $A=\bar{a_na_{n-1}...a_0}$ và cho $A_1=f(A),A_2=f(A_1),...$.
a)Chứng minh rằng:Tồn tại $k$ mà $A_k=A_{k+1}$.
b)Khi $A=19^{86}$ hãy xác định $A_k$ nói trên.

Bài 4:Cho $n$ điểm nằm trong nó,ta luôn có thể đánh số nó là $P_1,P_2,...,P_n$ sao cho $ABCD$ cạnh $1$.Các điểm $P,Q$ tương ứng nằm trên các đoạn $AB,AD$.Nếu chu vi $2$.Hỏi $ABCD$.Các điểm $E,F,G$ tương ứng nằm trên các đoạn $AB,AC,AD$.Chứng minh rằng:
1)$n>2$ số thực $x_1,x_2,...,x_n$.Đặt $4k$ điểm trên một đường tròn và đánh số chúng bởi các số $1,2,...,4k$(mỗi điểm viết một số,mỗi số dùng một lần).Người ta vẽ các dây của đường tròn này sao cho không có hai dây nào có chung điểm mút và hai điểm mút của mỗi dây này là hai trong số các điểm đã được lấy.
i)Chứng minh rằng có thể vẽ được $2k$ dây đôi một không có điểm chung sao cho với mỗi một dây này, hai số được viết tại hai đầu mút của nó khác nhau nhiều nhất là $3k-1$.
ii)Chứng minh rằng không thể vẽ để đạt được $3k-1$ trong câu i).

Bài viết đã được chỉnh sửa nội dung bởi inhtoan: 02-05-2009 - 07:59

1728

#2 QUANVU

QUANVU

    B&S-D

  • Hiệp sỹ
  • 4378 Bài viết
  • Giới tính:Nam

Đã gửi 15-03-2006 - 19:40

Các bạn có thể trao đổi về các bài toán ở đây:
Bài 1: http://diendantoanho...wtopic=9237&hl=
Bài 2: http://diendantoanho...wtopic=9357&hl=
Bài 3: http://diendantoanho...wtopic=9895&hl=
Bài 4: http://diendantoanho...wtopic=9243&hl=
Bài 5: http://diendantoanho...wtopic=9241&hl=
Bài 6: http://diendantoanho...wtopic=9242&hl=
Bài 7: http://diendantoanho...wtopic=9881&hl=
Bài 8: http://diendantoanho...st=0#entry63083
1728




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh