Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

cmr tồn tại vô số cặp số nguyên tố $(p,q)$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 tienthcsln

tienthcsln

    Hạ sĩ

  • Thành viên
  • 99 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình

Đã gửi 18-06-2014 - 10:48

Chứng minh rằng tồn tại vô số cặp số nguyên tố $(p,q)$ thỏa mãn

$\left\{\begin{matrix} p| 2^{q-1}-1\\q|2^{p-1}-1 \end{matrix}\right.$



#2 Secrets In Inequalities VP

Secrets In Inequalities VP

    Sĩ quan

  • Thành viên
  • 309 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên Vĩnh Phúc
  • Sở thích:Xem phim.

Đã gửi 20-06-2014 - 10:12

Chứng minh rằng tồn tại vô số cặp số nguyên tố $(p,q)$ thỏa mãn

$\left\{\begin{matrix} p| 2^{q-1}-1\\q|2^{p-1}-1 \end{matrix}\right.$

Ta có 2 NX quen thuộc :

$NX1$ : Nếu số nguyên tố $p|2^{2^{n}}+1$ với $n>3$ thì $p-1 \vdots 2^{n+2}$

$NX2$ : $2^{2^{n}}+1\neq p^{k}$ với mọi $n>3$ có nghĩa là số này luôn có ít nhất 2 ước nguyên tố phân biệt.

Chọn $ p|2^{2^{n}}+1;q|2^{2^{n+1}}+1 $ suy ra $p-1\vdots 2^{n+2}$ và $q-1\vdots 2^{n+3}$ 

Khi đó ta có :

$2^{q-1}-1\vdots 2^{2^{n+3}}-1\vdots 2^{2^{n+1}}-1\vdots 2^{2^{n}}+1\vdots p$

$2^{p-1}-1\vdots 2^{2^{n+2}}-1\vdots 2^{2^{n+1}}+1\vdots q$

Vậy  chọn $p,q$ như trên là ta có đpcm.






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh