Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Hình ảnh

Cho tam giác ABC nội tiếp đường tròn (O)


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Trinh Cao Van Duc

Trinh Cao Van Duc

    Hạ sĩ

  • Thành viên
  • 76 Bài viết
  • Giới tính:Nam

Đã gửi 21-06-2014 - 22:45

Cho tam giác ABC nội tiếp đường tròn (O), Lấy điểm D trên cung BC không chứa điểm A(D khác B,C).Gọi H ,I,K lần lượt là hình chiếu vuông góc của D trên các đường thẳng BC,CA và AB.

Chứng minh: $\frac{BC}{DH}=\frac{AC}{DI}+\frac{AB}{DK}$



#2 HungNT

HungNT

    Thượng sĩ

  • Thành viên
  • 273 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng

Đã gửi 25-06-2014 - 09:21

untitled.PNG

Ta có các tứ giác BHDK,DHIC,ABDC nội tiếp

$\Rightarrow \angle KHD=\angle KBD=\angle ACD$

mà $\angle DHI+\angle ACD=180^{\circ}\Rightarrow \angle DHI+\angle KHD=180^{\circ}\Rightarrow \angle KHI=180^{\circ}\Rightarrow$ K,H,I thẳng hàng

$\angle HCD=\angle KAD\Rightarrow \Delta HCD\sim \Delta KAD\left ( G.G \right )\Rightarrow \frac{HC}{DH}=\frac{KA}{DK}$

$\angle HBD=\angle IAD\Rightarrow \Delta HBD\sim \Delta IAD\Rightarrow \frac{HB}{DH}=\frac{IA}{AD}$

$\angle BDK=\angle BHK=\angle CHI=\angle CDI\Rightarrow \Delta BDK\sim \Delta CDI\Rightarrow \frac{BK}{KD}= \frac{IC}{DI}$

Ta có $\frac{BC}{DH}=\frac{BH}{DH}+\frac{HC}{DH}= \frac{AI}{DI}+\frac{AK}{KD}=\frac{AI}{DI}+\frac{AB}{KD}+\frac{BK}{KD}=\frac{AI}{DI}+\frac{AB}{KD}+\frac{CI}{DI}=\frac{AC}{DI}+\frac{AB}{DK}$



#3 ThoiPhong

ThoiPhong

    Binh nhất

  • Thành viên
  • 33 Bài viết

Đã gửi 07-02-2017 - 10:01

attachicon.gifuntitled.PNG

Ta có các tứ giác BHDK,DHIC,ABDC nội tiếp

$\Rightarrow \angle KHD=\angle KBD=\angle ACD$

mà $\angle DHI+\angle ACD=180^{\circ}\Rightarrow \angle DHI+\angle KHD=180^{\circ}\Rightarrow \angle KHI=180^{\circ}\Rightarrow$ K,H,I thẳng hàng

$\angle HCD=\angle KAD\Rightarrow \Delta HCD\sim \Delta KAD\left ( G.G \right )\Rightarrow \frac{HC}{DH}=\frac{KA}{DK}$

$\angle HBD=\angle IAD\Rightarrow \Delta HBD\sim \Delta IAD\Rightarrow \frac{HB}{DH}=\frac{IA}{AD}$

$\angle BDK=\angle BHK=\angle CHI=\angle CDI\Rightarrow \Delta BDK\sim \Delta CDI\Rightarrow \frac{BK}{KD}= \frac{IC}{DI}$

Ta có $\frac{BC}{DH}=\frac{BH}{DH}+\frac{HC}{DH}= \frac{AI}{DI}+\frac{AK}{KD}=\frac{AI}{DI}+\frac{AB}{KD}+\frac{BK}{KD}=\frac{AI}{DI}+\frac{AB}{KD}+\frac{CI}{DI}=\frac{AC}{DI}+\frac{AB}{DK}$

 

attachicon.gifuntitled.PNG

Ta có các tứ giác BHDK,DHIC,ABDC nội tiếp

$\Rightarrow \angle KHD=\angle KBD=\angle ACD$

mà $\angle DHI+\angle ACD=180^{\circ}\Rightarrow \angle DHI+\angle KHD=180^{\circ}\Rightarrow \angle KHI=180^{\circ}\Rightarrow$ K,H,I thẳng hàng

$\angle HCD=\angle KAD\Rightarrow \Delta HCD\sim \Delta KAD\left ( G.G \right )\Rightarrow \frac{HC}{DH}=\frac{KA}{DK}$

$\angle HBD=\angle IAD\Rightarrow \Delta HBD\sim \Delta IAD\Rightarrow \frac{HB}{DH}=\frac{IA}{AD}$

$\angle BDK=\angle BHK=\angle CHI=\angle CDI\Rightarrow \Delta BDK\sim \Delta CDI\Rightarrow \frac{BK}{KD}= \frac{IC}{DI}$

Ta có $\frac{BC}{DH}=\frac{BH}{DH}+\frac{HC}{DH}= \frac{AI}{DI}+\frac{AK}{KD}=\frac{AI}{DI}+\frac{AB}{KD}+\frac{BK}{KD}=\frac{AI}{DI}+\frac{AB}{KD}+\frac{CI}{DI}=\frac{AC}{DI}+\frac{AB}{DK}$

Em thấy chứng minh K, H, I thẳng hàng chẳng để làm gì hết ạ






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh