Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh định lí "Hình thang có 2 đường chéo bằng nhau là hình thang cân".


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 amy

amy

    Hạ sĩ

  • Thành viên
  • 59 Bài viết
  • Giới tính:Nữ

Đã gửi 21-07-2014 - 15:29

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang $ABCD (AB // CD)$ có $AC = BD$. Qua $B$ kẻ đường thẳng song song với $AC$, cắt đường thẳng $DC$ tại $E$. Chứng minh rằng: 
 
a) $BDE$ là tam giác cân. 
 
b) $\triangle ACD = \triangle BDC.$
 
c) Hình thang $ABCD$ là hình thang cân.


#2 congchuasaobang

congchuasaobang

    Hạ sĩ

  • Thành viên
  • 58 Bài viết
  • Giới tính:Nữ
  • Sở thích:toán học, đọc truyện, nghe nhạc, ăn và chơi

Đã gửi 21-07-2014 - 16:10

 

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang $ABCD (AB // CD)$ có $AC = BD$. Qua $B$ kẻ đường thẳng song song với $AC$, cắt đường thẳng $DC$ tại $E$. Chứng minh rằng: 
 
a) $BDE$ là tam giác cân. 
 
b) $\triangle ACD = \triangle BDC.$
 
c) Hình thang $ABCD$ là hình thang cân.

 

a, Ta có: BE song song AC ( theo bài ra)

               AB song song CE ( E thuộc CD)

       nên ABEC là hình bình hành, do đó AC=BE

               mà AC = BD

         nên BD=BE do đó BDE là tam giác cân

b, Ta có AC song song BE nên $\widehat{BEC}=\widehat{ACD}$

        mà $\widehat{BED}=\widehat{BDC}$ ( BDE là tam giác cân )

                       do đó  $\widehat{ACD}=\widehat{BDC}$

      Xét tg ACD và tg BDC có : $\widehat{ACD}=\widehat{BDC}$

                                                AC=BD( theo gt )

                                                BC là cạnh chung

        nên tg ACD =tg BDC ( c-g-c)

c, Theo chứng minh câu b, ta có: tg ACD= tg BDC

              do đó $\widehat{ADC}=\widehat{BCD}$

        Vậy ABCD là hình thang cân



#3 A4 Productions

A4 Productions

    Sĩ quan

  • Thành viên
  • 454 Bài viết
  • Giới tính:Nam
  • Đến từ:$\textbf{THPT Việt Yên 1}$

Đã gửi 21-07-2014 - 16:12

 

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang $ABCD (AB // CD)$ có $AC = BD$. Qua $B$ kẻ đường thẳng song song với $AC$, cắt đường thẳng $DC$ tại $E$. Chứng minh rằng: 
 
a) $BDE$ là tam giác cân. 
 
b) $\triangle ACD = \triangle BDC.$
 
c) Hình thang $ABCD$ là hình thang cân.

 

a. Ta có $BE//AC \Rightarrow \widehat {BEC} = \widehat {ACD}\left( 1 \right)$, $\widehat {ACD} = \widehat {BAC}\left( 2 \right)$ (SLT) và $\widehat {BAC} = \widehat {BDC}\left( 3 \right)$ (cùng chắn $BC$)

 

Từ $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ suy ra $\widehat {BEC} = \widehat {BDC}$. Vậy $BDE$ cân tại $B$.

 

b. Từ chứng minh trên ta có $\widehat {ACD} = \widehat {BDC}$. Vậy $\Delta ACD = \Delta BDC$ (c.g.c)

 

c. $\widehat {ADC} = \widehat {BCD}$ (cmt)

2014-07-21_161344.jpg


Bài viết đã được chỉnh sửa nội dung bởi sonesod: 21-07-2014 - 16:13

  • amy yêu thích

DSC02736_zps169907e0.jpg


#4 huuhieuht

huuhieuht

    Trung sĩ

  • Thành viên
  • 191 Bài viết
  • Giới tính:Nam
  • Đến từ:Đến từ trường THPT chuyên Hà Tĩnh(Đã từng học tại THCS Nguyễn Du)
  • Sở thích:Toán học,naruto,amzing spiderman...

Đã gửi 03-08-2014 - 22:20

Ngoài ra còn có cách là từ A kẻ //với BC cũng được


Không có giới hạn tư duy nào của con người ngoài giới hạn do chính con người đặt ra (Napoleon Hill)   :D  :D  :D  :like  ~O) 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh