Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * - 1 Bình chọn

Tìm Max P = $\sum \sqrt[3]{\frac{a^{2}+a}{a^{2}+a+1}}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 nam8298

nam8298

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nam
  • Đến từ:Vĩnh Phúc
  • Sở thích:đá bóng chơi cờ và làm toán

Đã gửi 21-07-2014 - 17:10

cho a,b,c > 0 thoả mãn $abc\leq 1$ .Tìm Max P = $\sum \sqrt[3]{\frac{a^{2}+a}{a^{2}+a+1}}$


Làm toán là một nghệ thuật mà trong đó người làm toán là một nghệ nhân


#2 phamquanglam

phamquanglam

    Sĩ quan

  • Thành viên
  • 377 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Phúc Thành - Kinh Môn - Hải Dương
  • Sở thích:Toán, Hóa, Sinh, Badminton

Đã gửi 23-07-2014 - 07:13

cho a,b,c > 0 thoả mãn $abc\leq 1$ .Tìm Max P = $\sum \sqrt[3]{\frac{a^{2}+a}{a^{2}+a+1}}$

Áp dụng BĐT Holder 3 số: 

$\sum a^{3}.\sum x^{3}.\sum m^{3}\geq (axm+byn+czp)^{3}$

Mình đã chứng minh ở đây! http://diendantoanho...geq-axmbynczp3/ :icon6:  :icon6:

Làm luôn!  :luoi:

Áp dụng BĐT Holder: $P^{3}\leq (1+1+1)(1+1+1)(\sum \frac{a^{2}+a}{a^{2}+a+1})=9\sum \frac{a^{2}+a}{a^{2}+a+1}$

Đặt: $A=\sum \frac{a^{2}+a}{a^{2}+a+1}$

$\Rightarrow 3-A=\sum \frac{1}{a^{2}+a+1}$

Đặt: $a=\frac{yz}{x^{2}}; b=\frac{zx}{y^{2}}; c=\frac{xy}{z^{2}}$

$\Rightarrow 3-A=\sum \frac{x^{4}}{x^{4}+x^{2}yz+y^{2}z^{2}}\geq \frac{(x^{2}+y^{2}+z^{2})^{2}}{\sum x^{4}+xyz(x+y+z)+\sum y^{2}z^{2}}\geq \frac{(x^{2}+y^{2}+z^{2})^{2}}{\sum x^{4}+2\sum y^{2}z^{2} }\geq 1\Rightarrow A\leq 2$

$\Rightarrow P^{3}\leq 9A\leq 9.2\Rightarrow P\leq \sqrt[3]{18}$


:B) THPT PHÚC THÀNH K98  :B) 

 

Cuộc sống luôn không ngừng đổi thay, chỉ có tình yêu là luôn ở đó, vẹn tròn và bất diệt. Chính vì thế tôi thay đổi để giữ điều ấy, để tốt hơn từng ngày

Thay đổi cho những điều không bao giờ đổi thay

 

Học toán trên facebook:https://www.facebook...48726405234293/

My facebook:https://www.facebook...amHongQuangNgoc

:off:  :off:  :off:


#3 megamewtwo

megamewtwo

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam

Đã gửi 23-07-2014 - 12:50

Áp dụng BĐT Holder 3 số: 

$\sum a^{3}.\sum x^{3}.\sum m^{3}\geq (axm+byn+czp)^{3}$

Mình đã chứng minh ở đây! http://diendantoanho...geq-axmbynczp3/ :icon6:  :icon6:

Làm luôn!  :luoi:

Áp dụng BĐT Holder: $P^{3}\leq (1+1+1)(1+1+1)(\sum \frac{a^{2}+a}{a^{2}+a+1})=9\sum \frac{a^{2}+a}{a^{2}+a+1}$

Đặt: $A=\sum \frac{a^{2}+a}{a^{2}+a+1}$

$\Rightarrow 3-A=\sum \frac{1}{a^{2}+a+1}$

Đặt: $a=\frac{yz}{x^{2}}; b=\frac{zx}{y^{2}}; c=\frac{xy}{z^{2}}$

$\Rightarrow 3-A=\sum \frac{x^{4}}{x^{4}+x^{2}yz+y^{2}z^{2}}\geq \frac{(x^{2}+y^{2}+z^{2})^{2}}{\sum x^{4}+xyz(x+y+z)+\sum y^{2}z^{2}}\geq \frac{(x^{2}+y^{2}+z^{2})^{2}}{\sum x^{4}+2\sum y^{2}z^{2} }\geq 1\Rightarrow A\leq 2$

$\Rightarrow P^{3}\leq 9A\leq 9.2\Rightarrow P\leq \sqrt[3]{18}$

Lam ơi cho mình hỏi $abc\leq 1\Rightarrow \left ( a;b;c \right )= \left ( \frac{yz}{x^{2}};\frac{xz}{y^{2}};\frac{xy}{z^{2}} \right )$

:ohmy:  :ohmy:  :ohmy:



#4 megamewtwo

megamewtwo

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam

Đã gửi 25-07-2014 - 19:03

Tiếp nối ý tưởng của lam 

ta cóÁp dụng BĐT Holder: $P^{3}\leq (1+1+1)(1+1+1)(\sum \frac{a^{2}+a}{a^{2}+a+1})=9\sum \frac{a^{2}+a}{a^{2}+a+1}$

Đặt: $A=\sum \frac{a^{2}+a}{a^{2}+a+1}$

$\Rightarrow 3-A=\sum \frac{1}{a^{2}+a+1}$

Đặt : $abc=k^{3}\leq 1\Rightarrow k\leq 1\Rightarrow \left ( a;b;c \right )= \left ( k\frac{yz}{x^{2}};k\frac{xz}{y^{2}};k\frac{xy}{z^{2}} \right )$

$\Rightarrow 3-A= \sum \frac{x^{4}}{x^{4}+kx^{2}yz+k^{2}y^{2}z^{2}}\geq \frac{\left ( x^{2}+y^{2}+z^{2} \right )^{2}}{\sum x^{4}+\sum x^{2}yz+\sum y^{2}z^{2} }\geq\frac{\left ( x^{2}+y^{2}+z^{2} \right )^{2}}{\left ( x^{2}+y^{2}+z^{2} \right )^{2}}= 1$

 

:icon6:  :icon6:  :icon6:  :icon6:  :icon6:


Bài viết đã được chỉnh sửa nội dung bởi megamewtwo: 25-07-2014 - 19:05





3 người đang xem chủ đề

0 thành viên, 3 khách, 0 thành viên ẩn danh