Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

cmr $\sum \frac{1}{ab+a+2}\leq \frac{3}{4}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 killerdark68

killerdark68

    Thượng sĩ

  • Thành viên
  • 266 Bài viết
  • Giới tính:Nam
  • Đến từ:My house
  • Sở thích:Anime&Manga

Đã gửi 04-08-2014 - 10:45

cho abc=1 a,b,c>0 cmr $\sum \frac{1}{ab+a+2}\leq \frac{3}{4}$



#2 Mikhail Leptchinski

Mikhail Leptchinski

    Thiếu úy

  • Thành viên
  • 703 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Hùng Vương,Phú Thọ
  • Sở thích:Phương trình hệ phương trình,đại số,hình giải tích phẳng.Giao lưu kết bạn trên facebook,nghe nhạc,ước mơ dạy học,...

Đã gửi 04-08-2014 - 10:56

cho abc=1 a,b,c>0 cmr $\sum \frac{1}{ab+a+2}\leq \frac{3}{4}$

Ta có:$\frac{1}{ab+a+2}=\frac{1}{ab+1+a+1}\leq \frac{1}{4}(\frac{1}{ab+1}+\frac{1}{a+1})=\frac{1}{4}(\frac{1}{\frac{1}{c}+1}+\frac{1}{a+1})=\frac{1}{4}(\frac{c}{c+1}+\frac{1}{a+1})$

Tương tự có:$\sum \frac{1}{ab+a+2}\leq \frac{1}{4}(\sum \frac{a+1}{a+1})=\frac{3}{4}$

Dấu bằng xảy ra :$a=b=c=1$


Chính trị chỉ cho hiện tại,nhưng phương trình là mãi mãi

(Albert Einstein)
Đường đi không khó vì ngăn sông cách núi,mà khó vì lòng người ngại núi e sông




Đừng xấu hổ khi không biết ,chỉ xấu hổ khi không học

Các bạn ủng hộ kỹ thuật tìm điểm rơi trong chứng minh bất đẳng thức nhé
:icon12: :icon12: Tại đây :icon12: :icon12:

#3 einstein627

einstein627

    Trung sĩ

  • Thành viên
  • 102 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội, VN, Lớp 10T1 Trường Hà Nội Amsterdam
  • Sở thích:Được thành công cùng bạn mình,hình học thuần túy, số học,bđt,pt hàm,bóng đá bóng bàn,ghét hình học giải tích đồ thị đại số,...

Đã gửi 04-08-2014 - 12:17

cho abc=1 a,b,c>0 cmr $\sum \frac{1}{ab+a+2}\leq \frac{3}{4}$

Cách 2
$\sum (\frac{\frac{1}{9}}{1}+\frac{1}{a+ab+1})\geq \sum \frac{\frac{16}{9}}{a+ab+2}$

Mặt khác do abc=1 nên

$\sum \frac{1}{a+ab+1}=1$
Suy ra
$\Leftrightarrow \frac{1}{3}+1= \frac{4}{3}\geq \sum \frac{\frac{16}{9}}{ab+a+2} \Leftrightarrow \frac{3}{4}\geq \sum \frac{1}{ab+a+2}$
Ta có DPCM


Bài viết đã được chỉnh sửa nội dung bởi einstein627: 04-08-2014 - 12:18

-Học từ ngày hôm qua, sống ngày hôm nay, hi vọng cho ngày mai. Điều quan trọng nhất là không ngừng đặt câu hỏi.

-Albert Einstein

 
-Khi Bạn Sắp Bỏ Cuộc, Hãy Nhớ Tới Lý Do Khiến Bạn Bắt Đầu.

 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh