Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

1.Cho X={1;2;3...;2009} và 2 tập con A,B có tổng số phần tử >2010.CMR tồn tại ít nhất 1 phần tử của A và 1 phần tử của B sao cho chúng có tổng =2010


  • Please log in to reply
Chủ đề này có 8 trả lời

#1 Ruffer

Ruffer

    Hạ sĩ

  • Thành viên
  • 70 Bài viết

Đã gửi 25-08-2014 - 17:43

1.Cho X={1;2;3...;2009} và 2 tập con A,B có tổng số phần tử >2010.CMR tồn tại ít nhất 1 phần tử của A và 1 phần tử của B sao cho chúng có tổng =2010

2.cho S là tập con của R(tập hợp số thưc) thỏa mãn

+Z(tập hợp số nguyên) là tập con của S

+$(\sqrt{2}+\sqrt{3}) \epsilon$ S

+với mọi x;y thuộc S có x+y thuộc S và x.y thuôc S

CMR $\frac{1}{\sqrt{2}+\sqrt{3}}$ thuộc S

3.cho X={1;2;3;...;25} CMR với mọi tập con gồm 17 phần tử của X đều chứa 2 phần tử có tích là số chính phương

4.tồn tại hay ko 1 tập gồm 1000 số nguyên dương sao cho khi bỏ 1 phần tử bất kì thì 999 phần tử còn lại chia thành 2 tập con có tổng các phần tử bằng nhau

5.Khí hiệu |X| là số phần tử tập hợp X CMR.|A$\cup$B|=|A|+|B| - |A$\cap$B|


Bài viết đã được chỉnh sửa nội dung bởi Ruffer: 25-08-2014 - 17:50


#2 lahantaithe99

lahantaithe99

    Trung úy

  • Thành viên
  • 883 Bài viết
  • Giới tính:Nữ

Đã gửi 25-08-2014 - 18:05

1.Cho X={1;2;3...;2009} và 2 tập con A,B có tổng số phần tử >2010.CMR tồn tại ít nhất 1 phần tử của A và 1 phần tử của B sao cho chúng có tổng =2010

 

1. Đặt

 

$A=\left \{ a_1,a_2,...,a_p \right \};B=\left \{ b_1,b_2,... ,b_q\right \}$

 
Trong đó $p+q>2010$
 
Xét tập $C=\left \{ c_1,c_2,...,c_q \right \}$ mà $c_i=2010-b_i$ .Dễ thấy $C$ là tập conc của $X$
 
Khi đó ta có $p+q$ số tự nhiên nhỏ hơn $2010$ sau: $a_1,a_2,...,a_p,c_1,c_2,...,c_q$
 
Vì chỉ có $2010$ số tự nhiên nhỏ hơn $2010$ mà $p+q>2010$ nên tồn tại một phần tử của $C$ bằng $A$. Khi đó hiển nhiên có đpcm
 
5.
Đặt $A=\left \{ a_1,a_2,...,a_p,c_1,c_2,...,c_m \right \};B=\left \{ b_1,b_2,...,b_q,c_1,c_2,...,c_m \right \}$
 
Trong đó những phần tử $a_i\neq b_i$
 
Khi đó 
 
$|A\cup B|=m;|A|+|B|-|A\cap  B|=m+p+m+q-(m+p+q)=m$
 
Nên ta có đpcm

Bài viết đã được chỉnh sửa nội dung bởi lahantaithe99: 25-08-2014 - 18:27


#3 Bui Ba Anh

Bui Ba Anh

    Thiếu úy

  • Thành viên
  • 562 Bài viết
  • Giới tính:Nam
  • Sở thích:Mathematics

Đã gửi 25-08-2014 - 20:14

3) Chém câu $3$

Do $\sqrt{2}+\sqrt{3}\epsilon S=>\frac{1}{\sqrt{3}-\sqrt{2}}\epsilon S(1)$

Mặt khác $\sqrt{2}+\sqrt{3}\epsilon S;-1\epsilon S=>-(\sqrt{2}+\sqrt{3})\epsilon S=>-(\sqrt{2}+\sqrt{3})^2\epsilon S=>-5-2\sqrt{6}\epsilon S=>10-5-2\sqrt{6}\epsilon S(10\epsilon S)=>5-2\sqrt{6}\epsilon S=>(\sqrt{3}-\sqrt{2})^2\epsilon S(2)$

Từ $(1)(2)$ ta có $\frac{(\sqrt{3}-\sqrt{2})^2}{\sqrt{3}-\sqrt{2}}\epsilon S=>\sqrt{3}-\sqrt{2}\epsilon S=>\frac{1}{\sqrt{2}+\sqrt{3}}\epsilon S$

$Q.E.D$

A-T :)

Không liên quan nhưng cho mình hỏi bạn lấy bài những này ở đâu thế ???????


NgọaLong

#4 Kool LL

Kool LL

    Sĩ quan

  • Thành viên
  • 370 Bài viết
  • Giới tính:Nam
  • Đến từ:Tp.HCM

Đã gửi 25-08-2014 - 20:27

2. Cho tậ hợp $S$ thỏa mãn

(1) : $\mathbb{Z} \subseteq S\subseteq \mathbb{R}$

(2) : $(\sqrt{2}+\sqrt{3}) \in S$

(3) : $\forall x,y \in S$ thì $x+y\in S$ và $x.y\in S$

CMR :  $\frac{1}{\sqrt{2}+\sqrt{3}}\in S$

 

(1) $\Rightarrow (-1)\in S$  $\overset{(3)}{\Rightarrow}$  $\forall x\in S$  thì   $(-x)=x.(-1)\in S$  $\overset{(3)}{\Rightarrow}$  $\forall x,y\in S$  thì   $x-y=x+(-y)\in S$ (4)

 

(2)(3) $\Rightarrow 5+2\sqrt{6}=(\sqrt{2}+\sqrt{3})^2\in S$  $\overset{(1)(3)}{\Rightarrow}$  $2\sqrt{6}=(5+2\sqrt{6})+(-5)\in S$

$\overset{(3)}{\Rightarrow}$  $4\sqrt{3}+6\sqrt{2}=(2\sqrt{6}).(\sqrt{2}+\sqrt{3})\in S$ (5)

 

(1)(3) $\Rightarrow (-6).(\sqrt{2}+\sqrt{3})\in S$  $\overset{(5)}{\Rightarrow}$  $\overset{(5)}{\Rightarrow}$  $-2\sqrt{2}=(4\sqrt{2}+6\sqrt{3})+(-6)(\sqrt{2}+\sqrt{3})\in S$

$\overset{(2)}{\Rightarrow}$  $\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}=(\sqrt{2}+\sqrt{3})+(-2\sqrt{2})\in S$


Bài viết đã được chỉnh sửa nội dung bởi Kool LL: 25-08-2014 - 20:34


#5 Ruffer

Ruffer

    Hạ sĩ

  • Thành viên
  • 70 Bài viết

Đã gửi 25-08-2014 - 20:34

 

1. Đặt

 

$A=\left \{ a_1,a_2,...,a_p \right \};B=\left \{ b_1,b_2,... ,b_q\right \}$

 
Trong đó $p+q>2010$
 
Xét tập $C=\left \{ c_1,c_2,...,c_q \right \}$ mà $c_i=2010-b_i$ .Dễ thấy $C$ là tập conc của $X$
 
Khi đó ta có $p+q$ số tự nhiên nhỏ hơn $2010$ sau: $a_1,a_2,...,a_p,c_1,c_2,...,c_q$
 
Vì chỉ có $2010$ số tự nhiên nhỏ hơn $2010$ mà $p+q>2010$ nên tồn tại một phần tử của $C$ bằng $A$. Khi đó hiển nhiên có đpcm
 
5.
Đặt $A=\left \{ a_1,a_2,...,a_p,c_1,c_2,...,c_m \right \};B=\left \{ b_1,b_2,...,b_q,c_1,c_2,...,c_m \right \}$
 
Trong đó những phần tử $a_i\neq b_i$
 
Khi đó 
 
$|A\cup B|=m;|A|+|B|-|A\cap  B|=m+p+m+q-(m+p+q)=m$
 
Nên ta có đpcm

 

Bạn đã từng giải rồi à ? hay là áp dụng phần lý thuyết nào để giải ?

 

3) Chém câu $3$

Do $\sqrt{2}+\sqrt{3}\epsilon S=>\frac{1}{\sqrt{3}-\sqrt{2}}\epsilon S(1)$

Mặt khác $\sqrt{2}+\sqrt{3}\epsilon S;-1\epsilon S=>-(\sqrt{2}+\sqrt{3})\epsilon S=>-(\sqrt{2}+\sqrt{3})^2\epsilon S=>-5-2\sqrt{6}\epsilon S=>10-5-2\sqrt{6}\epsilon S(10\epsilon S)=>5-2\sqrt{6}\epsilon S=>(\sqrt{3}-\sqrt{2})^2\epsilon S(2)$

Từ $(1)(2)$ ta có $\frac{(\sqrt{3}-\sqrt{2})^2}{\sqrt{3}-\sqrt{2}}\epsilon S=>\sqrt{3}-\sqrt{2}\epsilon S=>\frac{1}{\sqrt{2}+\sqrt{3}}\epsilon S$

$Q.E.D$

A-T :)

Không liên quan nhưng cho mình hỏi bạn lấy bài những này ở đâu thế ???????

Bài tập về nhà bạn ạ :))



#6 Ruffer

Ruffer

    Hạ sĩ

  • Thành viên
  • 70 Bài viết

Đã gửi 25-08-2014 - 21:25

 

 

 
5.
Đặt $A=\left \{ a_1,a_2,...,a_p,c_1,c_2,...,c_m \right \};B=\left \{ b_1,b_2,...,b_q,c_1,c_2,...,c_m \right \}$
 
Trong đó những phần tử $a_i\neq b_i$
 
Khi đó 
 
$|A\cup B|=m;|A|+|B|-|A\cap  B|=m+p+m+q-(m+p+q)=m$
 
Nên ta có đpcm

 

$|A\cup B|$ phải bằng p+q và $|A\cap  B|$ bằng m chứ nhỉ ? cái bài này thầy giáo mình có (Nguyên lý thêm bớt) gì đó 



#7 Bui Ba Anh

Bui Ba Anh

    Thiếu úy

  • Thành viên
  • 562 Bài viết
  • Giới tính:Nam
  • Sở thích:Mathematics

Đã gửi 25-08-2014 - 21:35

Bạn đã từng giải rồi à ? hay là áp dụng phần lý thuyết nào để giải ?

 

Những bài liên quan đến tổng hai số trong dãy bằng một số nào đó và có thiên hướng đirichle thì đều trừ như vậy nhé ban


NgọaLong

#8 Kool LL

Kool LL

    Sĩ quan

  • Thành viên
  • 370 Bài viết
  • Giới tính:Nam
  • Đến từ:Tp.HCM

Đã gửi 27-08-2014 - 13:14

3.cho X={1;2;3;...;25} CMR với mọi tập con gồm 17 phần tử của X đều chứa 2 phần tử có tích là số chính phương

 

NX :

* $A=\{1,\ 4,\ 9,\ 16,\ 25\}$ là các SCP trong $X$ nên có 2 số có tích là SCP.

* $B=\{2,\ 8,\ 18\}$ 2 số bất kì trong $B$ có tích là SCP.

* $C=\{(3,\ 12)\ ;\ (5,\ 20)\ ;\ (6,\ 24)\}$ là các cặp 2 số có tích là SCP.

 

Gọi $Y$ là tập con gồm 17 phần tử bất kì của X. Ta chỉ có 4 TH sau đây :

* Nếu $Y$ có chứa 2 phần tử bất kì trong $A$ hoặc trong $B$ thì sẽ có 2 phần tử có tích là SCP.

* Nếu $Y$ chứa tối đa 1 phần tử trong $B$ và không có phần tử nào trong $A$ thì chắc chắn sẽ có chứa cặp số trong $C$ nên có tích là SCP.

* Nếu $Y$ chứa tối đa 1 phần tử trong $A$ và không có phần tử nào trong $B$ thì chắc chắn sẽ có chứa cặp số trong $C$ nên có tích là SCP.

* Nếu $Y$ chứa duy nhất 1 phần tử trong $A$ và duy nhất 1 phần tử trong $B$ thì chắc chắn sẽ có chứa cặp số trong $C$ nên có tích là SCP.

Vậy trong mọi TH ta đều có (đpcm).


Bài viết đã được chỉnh sửa nội dung bởi Kool LL: 27-08-2014 - 13:16


#9 Ruffer

Ruffer

    Hạ sĩ

  • Thành viên
  • 70 Bài viết

Đã gửi 27-08-2014 - 16:57

NX :

* $A=\{1,\ 4,\ 9,\ 16,\ 25\}$ là các SCP trong $X$ nên có 2 số có tích là SCP.

* $B=\{2,\ 8,\ 18\}$ 2 số bất kì trong $B$ có tích là SCP.

* $C=\{(3,\ 12)\ ;\ (5,\ 20)\ ;\ (6,\ 24)\}$ là các cặp 2 số có tích là SCP.

 

Gọi $Y$ là tập con gồm 17 phần tử bất kì của X. Ta chỉ có 4 TH sau đây :

* Nếu $Y$ có chứa 2 phần tử bất kì trong $A$ hoặc trong $B$ thì sẽ có 2 phần tử có tích là SCP.

* Nếu $Y$ chứa tối đa 1 phần tử trong $B$ và không có phần tử nào trong $A$ thì chắc chắn sẽ có chứa cặp số trong $C$ nên có tích là SCP.

* Nếu $Y$ chứa tối đa 1 phần tử trong $A$ và không có phần tử nào trong $B$ thì chắc chắn sẽ có chứa cặp số trong $C$ nên có tích là SCP.

* Nếu $Y$ chứa duy nhất 1 phần tử trong $A$ và duy nhất 1 phần tử trong $B$ thì chắc chắn sẽ có chứa cặp số trong $C$ nên có tích là SCP.

Vậy trong mọi TH ta đều có (đpcm).

http://diendantoanho...au-theo-2-cách/,


Bài viết đã được chỉnh sửa nội dung bởi Ruffer: 27-08-2014 - 21:15





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh