Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\geq 2(a+b+c)$


  • Please log in to reply
Chủ đề này có 6 trả lời

#1 PT Quang 831

PT Quang 831

    Hạ sĩ

  • Thành viên
  • 66 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Thăng Long Đà Lạt
  • Sở thích:...

Đã gửi 27-08-2014 - 01:51

1) Cho $abc=1$
CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\geq 2(a+b+c)$
2) Cho $0\leq a.b.c\leq 1$
CMR: $a^3+b^3+c^3\leq 1+a^3b+b^3c+c^3a$



#2 chardhdmovies

chardhdmovies

    Thiếu úy

  • Thành viên
  • 638 Bài viết
  • Giới tính:Nam
  • Đến từ:thpt chuyên nguyễn du
  • Sở thích:đá banh, chém gió, đánh cờ

Đã gửi 27-08-2014 - 05:00

1) Cho $abc=1$
CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\geq 2(a+b+c)$
2) Cho $0\leq a.b.c\leq 1$
CMR: $a^3+b^3+c^3\leq 1+a^3b+b^3c+c^3a$

1,$a,b,c>0$ nữa chứ nhỉ

2,hình như là $a^2b$ thì phải


                                                                                    chúng tôi là 3 người từ lớp 10 cá tính:NRC,NTP,A-Q


#3 dogsteven

dogsteven

    Đại úy

  • Thành viên
  • 1567 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên toán Trần Hưng Đạo, Bình Thuận
  • Sở thích:Anti số học.

Đã gửi 09-12-2014 - 16:58

Problem 1:

$$f(x,y,z)=\sum \frac{1}{x^2}-2\sum x$$

$$f(x,y,z)-f(x,\sqrt{yz},\sqrt{yz})=\frac{(y-z)^2}{(yz)^2}-2\left(\sqrt{y}-\sqrt{z}\right)^2 \geqslant 0$$

$$\Leftrightarrow (\sqrt{y}-\sqrt{z})^2\left[\frac{y+z+2\sqrt{yz}}{(yz)^2}-2\right] \geqslant 0$$

Let $yz\leqslant 1$ then $\frac{y+z+2\sqrt{yz}}{(yz)^2} \geqslant \frac{4\sqrt{yz}}{(yz)^2} \geqslant 4$

 

Let $y=z$ and $x\geqslant 1$:

$$f(x,y,z)=\dfrac{2x^4-2x^3+3x^2-4x+1}{x^2} = \frac{(2x^3+3x-1)(x-1)}{x^2} \geqslant \frac{4(x-1)}{x^2} \geqslant 0$$


Quyết tâm off dài dài cày hình, số, tổ, rời rạc.


#4 cachuoi

cachuoi

    Trung sĩ

  • Thành viên
  • 117 Bài viết
  • Giới tính:Nam
  • Đến từ:hà nội
  • Sở thích:chả khoái gì

Đã gửi 12-12-2014 - 23:21

cách 2 cho bài 1 rất ngắn gọn 
giả sử trong 3 số abc có 2 số a và b cùng phía với 1 khi đó ab+1 >= a+b tức là a+b <= 1/c+1 
do vậy ta chỉ cần chứng minh 
sigma 1/a^2 + 3>= 2/c +2c+2 
áp dụng am gm 1/a^2+1/b^2 >= 2/ab =2c vậy ta chỉ cần cm 1/c^2 +3 >= 2/c +2 đúng theo am gm



#5 nguyenhongsonk612

nguyenhongsonk612

    Thượng úy

  • Thành viên
  • 1451 Bài viết
  • Giới tính:Nam
  • Đến từ:$\textrm{KSTN - ĐTVT - ĐHBKHN}$
  • Sở thích:$\textrm{Nghe nhạc không lời}$

Đã gửi 12-12-2014 - 23:34

1) Cho $abc=1$
CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\geq 2(a+b+c)$
2) Cho $0\leq a.b.c\leq 1$
CMR: $a^3+b^3+c^3\leq 1+a^3b+b^3c+c^3a$

$1)$ Đặt $\begin{pmatrix} \frac{1}{a};\frac{1}{b};\frac{1}{c} \end{pmatrix} \mapsto \begin{pmatrix} x;y;z \end{pmatrix}\Rightarrow xyz=1$

BĐT cần C/m tương đương với $x^2+y^2+z^2+2xyz+1\geq 2(xy+yz+zx)$ $(*)$

Đây là $1$ kết quả quen thuộc. Có thể chứng minh như thế này

Theo nguyên lý Đirichlet thì tồn tại ít nhất trong $3$ số $x-1;y-1;z-1$ $2$ số cùng dấu. Giả sử đó là $x-1;y-1$ $\Rightarrow (x-1)(y-1)\geq 0\Leftrightarrow xyz\geq xz+yz-z$

$\Rightarrow x^2+y^2+z^2+2xyz+1\geq x^2+y^2+z^2+2xz+2yz-2z+1$

Cần C/m $x^2+y^2+z^2+2xz+2yz-2z+1\geq 2xy+2yz+2zx\Leftrightarrow (x-y)^2+(z-1)^2\geq 0$ (luôn đúng)

BĐT được C/m xong

Dấu "=" $\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=1$


Bài viết đã được chỉnh sửa nội dung bởi nguyenhongsonk612: 12-12-2014 - 23:46

"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")

~O) 


#6 cachuoi

cachuoi

    Trung sĩ

  • Thành viên
  • 117 Bài viết
  • Giới tính:Nam
  • Đến từ:hà nội
  • Sở thích:chả khoái gì

Đã gửi 12-12-2014 - 23:40

 bài 2 cũng dùng dirichlet thôi



#7 nguyenhongsonk612

nguyenhongsonk612

    Thượng úy

  • Thành viên
  • 1451 Bài viết
  • Giới tính:Nam
  • Đến từ:$\textrm{KSTN - ĐTVT - ĐHBKHN}$
  • Sở thích:$\textrm{Nghe nhạc không lời}$

Đã gửi 12-12-2014 - 23:45

1) Cho $abc=1$
CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\geq 2(a+b+c)$
2) Cho $0\leq a.b.c\leq 1$
CMR: $a^3+b^3+c^3\leq 1+a^3b+b^3c+c^3a$

Bài $2$

Lời giải:

Xét tích $(1-a^3)(1-b^3)(1-c^3)\geq 0\Leftrightarrow 1+a^3b^3+b^3c^3+c^3a^3-a^3-b^3-c^3\geq a^3b^3c^3\geq 0\Leftrightarrow a^3+b^3+c^3\leq 1+a^3b^3+b^3c^3+c^3a^3$

Với $a,b,c \in [0;1]$ thì ta có nhận xét sau $a^3 \leq a$

$\Rightarrow 1+a^3b^3+b^3c^3+c^3a^3\leq 1+a^3b+b^3c+c^3a$

$\Rightarrow$ Đpcm

Dấu "=" $\Leftrightarrow$ có $2$ số bằng $1$, một số bằng $0$ hoặc hai số bằng $0$, một số bằng $1$

 

-------------------------------

Trình bày ra cho mọi người cùng xem đi cậu. 


Bài viết đã được chỉnh sửa nội dung bởi nguyenhongsonk612: 12-12-2014 - 23:50

"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")

~O) 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh