Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$G(x)=\sum \frac{p!}{(p-i)!}a_i$ cũng có n nghiệm thực phân biệt.


  • Please log in to reply
Chưa có bài trả lời

#1 tienthcsln

tienthcsln

    Hạ sĩ

  • Thành viên
  • 99 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình

Đã gửi 30-08-2014 - 00:46

Cho đa thức $P(x)=a_0 +a_1x+...+a_nx^n$ có n nghiệm thực phân biệt. Chứng minh rằng với mọi số nguyên $p$ mà $p>n$ thì đa thức
$G(x)=a_0 +p.a_1x+p(p-1).a_2x^2+...+p(p-1)...(p-n+1)a_nx^n$ cũng có $n$ nghiệm thực phân biệt.

 






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh