Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Chuyên đề về Tích Phân [Trần Phương]


  • Please log in to reply
Chủ đề này có 51 trả lời

#41 bookworm_vn

bookworm_vn

    Đến từ sao Hỏa...

  • Thành viên
  • 1241 Bài viết
  • Đến từ:Sao Hỏa
  • Sở thích:Sát thủ đầu đầy mủ..

Đã gửi 10-07-2006 - 14:00

sẽ thật là bổ ích hơn nếu sau khi kết thúc từng đợt thi, ai đó công bố đáp án để xem cái cách không quá 5 dấu = như thế nào..
<span style='color:blue'>You are my escape from tension!</span>

#42 BadMan

BadMan

    Người quản trị

  • Founder
  • 1369 Bài viết
  • Giới tính:Nam
  • Đến từ:Sài Gòn
  • Sở thích:Đánh tá lả

Đã gửi 18-07-2006 - 01:34

Gửi Hungkhtn và các bạn,

Đến hôm nay đã là 3http://dientuvietnam.net/cgi-bin/mimetex.cgi?\dfrac{1}{2} tháng kể từ ngày Hungkhtn tạo chủ đề này và đã quá hạn http://dientuvietnam.net/cgi-bin/mimetex.cgi?\dfrac{1}{2} tháng của ngày khép lại (không phải đóng/close) topic nên mình gửi Hungkhtn và các thành viên bài viết này với vai trò là một nguời quản lý cần có trách nhiệm với nội dung đăng tải trên diễn đàn.

Tên chủ đề mà Hungkhtn nêu ra là: Chuyên đề về Tích Phân [Trần Phương] và theo mình quan sát khi xem hết 3 trang trao đổi thì nội dung gồm 2 phần chính:

i) Giới thiệu sơ lược về cuốn sách Tích Phân của tác giả Trần Phương.
ii) Nêu một bài toán tích phân dành cho đối tượng là học sinh phổ thông để mọi người cùng thảo luận, những lời giải đúng/hay/đạt yêu cầu sẽ nhận được giải thưởng 1.000.000 đồng từ tác giả Trần Phương.

Đối với nội dung thứ nhất (i), đấy là một việc làm tốt và diễn đàn luôn khuyến khích. Khi bạn đọc một cuốn sách nếu thấy có nội dung tốt, phù hợp với các đối tượng sử dụng nào đó thì việc nói ra/viết lên diễn đàn là một sự chia sẽ đáng khích lệ. Tương tự nếu bạn phát hiện một cuốn sách/tài liệu nào đó được xuất bản nhưng còn "nhiều sạn", quá nhiều lỗi thì ý kiến đưa ra của bạn cũng cần được ghi nhận. Tuy nhiên, dù là tích cực hay hạn chế thì ý kiến của bạn vẫn mang tính cá nhân nên nó sẽ hoàn thiện hơn nếu được trao đổi, ghi nhận của nhiều ý kiến khác, đấy là lợi thế của diễn đàn. Từ đó mọi người sẽ có cơ sở để tham khảo khi tìm sách/tài liệu liên quan. Mục đích và mong muốn đạt được của mục giới thiệu sách và tài liệu trên diễn đàn là thế và bản thân mình cũng khuyến khích việc này là vì như vậy.

Về nội dung thứ hai (ii), bản thân mình nghĩ nếu Hùngkhtn có cách đặt vấn đề tốt hơn thì kết quả sẽ tốt hơn và kết cục cũng tốt hơn. Cụ thể:

- Nên đặt vai trò và tác động của bài toán cao hơn là giải thưởng. Cái gì là hay/mới của bài toán? Tại sao bài toán này được chọn để thảo luận mà không phải một bài khác (trong số rất nhiều bài) của chuyên đề tích phân được khảo sát trong cuốn sách của tác giả Trần Phương.

- Nếu chỉ đơn thuần là treo giải thì phải nêu rõ tiêu chí đạt giải ngay từ đầu chứ không nên bổ sung dần dần khi có những thắc mắc của thành viên.

- Khi có bình luận/hiểu nhầm vô tình (hay cố ý) của thành viên liên quan đến tác giả Trần Phương thì Hungkhtn cần có sự giải thích đúng mực để sự việc không đi quá xa mục tiêu ban đầu của topic.

Về mặt cá nhân mình không có ý kiến hay bình luận gì thêm nhưng với vai trò là người quản lý mình muốn Hungkhtn tổng kết lại sự kiện này bằng việc công bố giải thưởng như đã nêu ra ban đầu. Cụ thể:

- Hungkhtn chuyển cho tác giả Trần Phương những bài giải của thành viên đã tham gia gửi bài để tác giả "thẩm định" lời giải (hoặc tự Hung thẩm định nếu được tác giả ủy quyền).

- Công bố danh sách thành viên đạt giải và được nhận thưởng (nếu có) trên diễn đàn.

- Công bố đáp án của tác giả Trần Phương trên diễn đàn.

Những việc làm này để đảm bảo thông tin đã đăng tải trên diễn đàn toán học là đúng/chính xác. Đồng thời cũng giữ được chữ tín của tác giả Trần Phương.

Thân mến,


Cơm, áo, gạo, tiền
Bút, nghiên, sách, vở

#43 hungkhtn

hungkhtn

    Tiến sĩ diễn đàn toán

  • Hiệp sỹ
  • 1019 Bài viết
  • Đến từ:Stanford Uni, USA

Đã gửi 21-07-2006 - 07:44

Yes! Em se bao bac ay,!
Hiện tại mình không lên diễn đàn toán thường xuyên, thế nên nếu không trả lời đc Private Message trên diễn đàn được, mong các bạn thông cảm.

Visit www.hungpham.net/blog, where I am more available to talk with you.

#44 song_ha

song_ha

    Sống là chiến đấu

  • Pre-Member
  • 321 Bài viết
  • Giới tính:Nam
  • Đến từ:VIỆT_NAM
  • Sở thích: dạy con học toán&lt;br&gt; làm toán&lt;br&gt; AC MILAN

Đã gửi 31-07-2006 - 23:55

). Thế cuối cùng TP trong cái câu trên là Trần Phương hay Tích Phân hay mỗi TP cho một nghĩa?

Cả hai nghĩa đấy bác ạ!
<span style='color:red'>...Này sông cứ chảy như ngày ấy
Có người đi quên mất lối về.....</span>

#45 bookworm_vn

bookworm_vn

    Đến từ sao Hỏa...

  • Thành viên
  • 1241 Bài viết
  • Đến từ:Sao Hỏa
  • Sở thích:Sát thủ đầu đầy mủ..

Đã gửi 16-08-2006 - 19:20

hạn mới là 30-8-2006 nhé, không giới hạn độ tuổi.. :Rightarrow đây là thông tin chính xác.
<span style='color:blue'>You are my escape from tension!</span>

#46 math123

math123

    Thượng sĩ

  • Thành viên
  • 207 Bài viết
  • Đến từ:Hà Nội
  • Sở thích:Ca nhạc, Toán học, Tin học ...

Đã gửi 16-08-2006 - 19:29

Có tin được không anh bookworm_vn ?
mà hình như trao giải rồi mà
Offline hết tháng 8. Có gì nhắn vào YM : vietanhlt

#47 hungkhtn

hungkhtn

    Tiến sĩ diễn đàn toán

  • Hiệp sỹ
  • 1019 Bài viết
  • Đến từ:Stanford Uni, USA

Đã gửi 17-08-2006 - 16:52

Hi, một giải đã trao cho MM. Còn một giải nữa chưa biết trao cho ai vì có lẽ chưa có bài giải nào xứng đáng, (có ít người tham ra quá, ... thực ra chỉ có 1 nên chả biết chọn thế nào nữa). :D
Hiện tại mình không lên diễn đàn toán thường xuyên, thế nên nếu không trả lời đc Private Message trên diễn đàn được, mong các bạn thông cảm.

Visit www.hungpham.net/blog, where I am more available to talk with you.

#48 PHTH2005

PHTH2005

    Hạ sĩ

  • Thành viên
  • 88 Bài viết

Đã gửi 24-09-2006 - 19:19

Lời giải bài tích phân nè http://dientuvietnam.net/cgi-bin/mimetex.cgi?\int\dfrac{1}{x^8+1}dx=\int\dfrac{1}{(x^2+1)(x^2-\sqrt{3}x+1)(x^2+\sqrt{3}x+1)}dx=\int(\dfrac{1}{3}\dfrac{1}{x^2+1}+\dfrac{-\dfrac{1}{2\sqrt{3}}x+\dfrac{1}{3}}{x^2-sqrt{3}x+1}+\dfrac{\dfrac{1}{2\sqrt{3}}x+\dfrac{1}{3}}{x^2+sqrt{3}x+1})dx=\int(\dfrac{1}{3}\dfrac{1}{x^2+1}-\dfrac{1}{\sqrt{3}}\dfrac{2x-\sqrt{3}}{(2x-\sqrt{3})^2+1}+\dfrac{1}{3}\dfrac{1}{(2x-\sqrt{3})^2+1}+\dfrac{1}{\sqrt{3}}\dfrac{2x+\sqrt{3}}{(2x+\sqrt{3})^2+1}+\dfrac{1}{3}\dfrac{1}{(2x+\sqrt{3})^2+1})dx=\dfrac{1}{3}\int\dfrac{1}{x^2+1}dx-\dfrac{1}{4\sqrt{3}}\int\dfrac{1}{(2x-\sqrt{3})^2+1}d((2x-\sqrt{3})^2+1)+\dfrac{1}{6}\int\dfrac{1}{(2x-\sqrt{3})^2+1}d(2x-\sqrt{3})+\dfrac{1}{4\sqrt{3}}\int\dfrac{1}{(2x+\sqrt{3})^2+1}d((2x+\sqrt{3})^2+1)+\dfrac{1}{6}\int\dfrac{1}{(2x+\sqrt{3})^2+1}d(2x+\sqrt{3})=\dfrac{1}{3}arctgx-\dfrac{1}{4\sqrt{3}}ln((2x-\sqrt{3})^2+1)+\dfrac{1}{6}arctg(2x-\sqrt{3})+\dfrac{1}{4\sqrt{3}}ln((2x+\sqrt{3})^2+1)+\dfrac{1}{6}arctg(2x+\sqrt{3})

#49 NPKhánh

NPKhánh

    Tiến sĩ toán

  • Thành viên
  • 1115 Bài viết
  • Giới tính:Nam
  • Đến từ:maths.vn
  • Sở thích:Nghiên cứu Toán học

Đã gửi 24-09-2006 - 19:28

Bạn đã kết hợp mấy bài toán tích phân của tôi đấy à. Bạn xem kỹ lại bài giải không có vấn đề gì chứ

http://mathsvn.violet.vn trang ebooks tổng hợp miễn phí , nhiều tài liệu ôn thi Đại học



http://www.maths.vn Diễn đàn tổng hợp toán -lý - hóa ... dành cho học sinh THCS ;THPT và Sinh viên


#50 PHTH2005

PHTH2005

    Hạ sĩ

  • Thành viên
  • 88 Bài viết

Đã gửi 25-09-2006 - 12:32

Hi ,CHO em xin nỗi tất các mọi người nhen mình giải nhầm mũ 6
Giờ đây là lời giải mũ 8 nè
http://dientuvietnam.net/cgi-bin/mimetex.cgi?\int\dfrac{dx}{1+x^8}=\int(\dfrac{dx}{(1+x^2+\sqrt{2+\sqrt{2}}x)(1+x^2-\sqrt{2+\sqrt{2}}x)(1+x^2+\sqrt{2-\sqrt{2}}x)(1+x^2-\sqrt{2-\sqrt{2}}x)})=\dfrac{1}{8}\int(\dfrac{\sqrt{2+\sqrt{2}}x+2}{1+x^2+\sqrt{2+\sqrt{2}}x}+\dfrac{-\sqrt{2+\sqrt{2}}x+2}{1+x^2-\sqrt{2+\sqrt{2}}x}+\dfrac{\sqrt{2-\sqrt{2}}x+2}{1+x^2+\sqrt{2-\sqrt{2}}x}+\dfrac{-\sqrt{2-\sqrt{2}}x+2}{1+x^2-\sqrt{2-\sqrt{2}}x})dx=\dfrac{1}{8}\int\(\sqrt{2}(2+\sqrt{2})\dfrac{\sqrt{2}\sqrt{2+\sqrt{2}}x+\dfrac{2+\sqrt{2}}{2}}{(\sqrt{2}\sqrt{2+\sqrt{2}}x+\dfrac{2+\sqrt{2}}{2})^2+1}+\dfrac{\sqrt{2}}{\sqrt{2+\sqrt{2}}}\dfrac{sqrt{2}sqrt{2+\sqrt{2}}}{(\sqrt{2}\sqrt{2+\sqrt{2}}x-\dfrac{2+\sqrt{2}}{2})^2+1}-\sqrt{2}(2+\sqrt{2})\dfrac{sqrt{2}\sqrt{2+\sqrt{2}}x-\dfrac{2+\sqrt{2}}{2}}{(\sqrt{2}\sqrt{2+\sqrt{2}}x-\dfrac{2+\sqrt{2}}{2})^2+1}+\dfrac{\sqrt{2}}{\sqrt{2+\sqrt{2}}}\dfrac{\sqrt{2}\sqrt{2+\sqrt{2}}}{(\sqrt{2}\sqrt{2+\sqrt{2}}x-\dfrac{2+\sqrt{2}}{2})^2+1}+\sqrt{2}(2-\sqrt{2})\dfrac{\sqrt{2}\sqrt{2-\sqrt{2}}x+\dfrac{2-\sqrt{2}}{2}}{(\sqrt{2}\sqrt{2-\sqrt{2}}x+\dfrac{2-\sqrt{2}}{2})^2+1}+\dfrac{\sqrt{2}}{\sqrt{2-sqrt{2}}}\dfrac{\sqrt{2}\sqrt{2-\sqrt{2}}}{(\sqrt{2}\sqrt{2-\sqrt{2}}x+\dfrac{2-\sqrt{2}}{2})^2+1}-\sqrt{2}(2-\sqrt{2})\dfrac{sqrt{2}\sqrt{2-\sqrt{2}}x-\dfrac{2-\sqrt{2}}{2}}{(\sqrt{2}\sqrt{2-\sqrt{2}}x-\dfrac{2-\sqrt{2}}{2})^2+1}+\dfrac{\sqrt{2}}{\sqrt{2-sqrt{2}}}\dfrac{\sqrt{2}\sqrt{2-\sqrt{2}}}{(\sqrt{2}\sqrt{2-\sqrt{2}}x-\dfrac{2-\sqrt{2}}{2})^2+1})dx
Còn lại thì các bạn áp dụng công thức thì ra ngay thôi mà (như bài toán mũ 6 đấy ở dấu bằng thứ 4,5)

VẬY BÀI TOÁN MŨ 8 ĐÃ ĐƯỢC GIẢI VIẾT THỎA MÃN ĐK GIẢI THƯỞNG !

#51 Yahiko

Yahiko

    Lính mới

  • Thành viên
  • 1 Bài viết

Đã gửi 29-01-2008 - 10:05

anh hung ko cong bo dap an ah?

#52 MasterXYZ

MasterXYZ

    Lính mới

  • Thành viên
  • 5 Bài viết

Đã gửi 03-02-2008 - 09:16

Bài này cũng đơn giản thôi mà anh có điều tính hơi rắc rối thôi. Cách làm của em nè:
+ Bước 1: phân tích mẫu số: $x^{8} +1= (x^{4}- sqrt{2}x^{2}+1)(x^{4}+ sqrt{2}x^{2}+1)$
+ Bước 2: dựa vào bước 1 phân tích phân số thành $a(x^{2}+1)/(x^{4}+sqrt{2}x^{2}+1)+b(x^{2}-1)/(x^{4}+sqrt{2}x^{2}+1)+c(x^{2}+1)/(x^{4}-sqrt{2}x^{2}+1)+d(x^{2}+1)/(x^{4}-sqrt{2}x^{2}+1)$
luôn có a, b, c, d vì khi quy đồng ta được 1 đa thức bậc 6, 4, 2 và 0 theo x khuyết hệ số. Vì vậy dùng đồng nhất thức ta được hệ pt 4 ẩn a, b, c, d luôn có nghiệm
+ Bước 3: chia tử và mẫu các phân số cho $x^{2}$
chuyển rồi chuyển tử về d(x+1/x) và d(x-1/x)
+ Bước 4: Đưa mẫu số các phân số về dạng $(x+1/x)^{2}+e$ và $(x-1/x)^{2}+f$
+ Bước 5: Lấy nguyên hàm từng phân số trên (gồm 2 hàm arctg và 2 hàm ln)
Trình bày sơ lược vậy thôi nhé, em lười gõ latex lắm :D

Bài viết đã được chỉnh sửa nội dung bởi MasterXYZ: 03-02-2008 - 09:35





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh