Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$\frac{cosx}{sin^2x(cosx-sinx)}> 8$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 RoyalMadrid

RoyalMadrid

    Trung sĩ

  • Thành viên
  • 194 Bài viết

Đã gửi 20-12-2014 - 20:54

Chứng minh rằng với mọi $x\in (0;\frac{\pi}{4})$ ta luôn có: 

$\frac{cosx}{sin^2x(cosx-sinx)}> 8$



#2 25 minutes

25 minutes

    Thành viên nổi bật 2015

  • Hiệp sỹ
  • 2795 Bài viết
  • Giới tính:Nam
  • Đến từ:KHTN-NEU
  • Sở thích:Cafe + radio + mưa

Đã gửi 20-12-2014 - 21:09

Chứng minh rằng với mọi $x\in (0;\frac{\pi}{4})$ ta luôn có: 

$\frac{cosx}{sin^2x(cosx-sinx)}> 8$

Đặt $t=\frac{\cos x}{\sin x}>1$

BĐT tương đương $\cos x(\sin^2x+\cos^2x)>8\sin^2x(\cos x-\sin x)$

              $\Leftrightarrow t(1+t^2)>8(t-1)$

              $\Leftrightarrow t^3-7t+8>0$

Dễ thấy bđt trên đúng với $t>1$


Hãy theo đuổi đam mê, thành công sẽ theo đuổi bạn.



Thảo luận BĐT ôn thi Đại học tại đây


#3 RoyalMadrid

RoyalMadrid

    Trung sĩ

  • Thành viên
  • 194 Bài viết

Đã gửi 20-12-2014 - 21:35

Đặt $t=\frac{\cos x}{\sin x}>1$

BĐT tương đương $\cos x(\sin^2x+\cos^2x)>8\sin^2x(\cos x-\sin x)$

              $\Leftrightarrow t(1+t^2)>8(t-1)$

              $\Leftrightarrow t^3-7t+8>0$

Dễ thấy bđt trên đúng với $t>1$

Tại sao lại đặt t như vậy, bạn có thể nói rõ hướng suy nghĩ đk ko? Có thể đưa về biến sin hoặc cos rồi đạo hàm đk ko nhỉ?






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh