Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

ĐỀ THI KIỂM TRA ĐỘI TUYỂN KHTN LỚP 10 VÒNG 2 NĂM 2015


  • Please log in to reply
Chủ đề này có 10 trả lời

#1 lahantaithe99

lahantaithe99

    Trung úy

  • Thành viên
  • 883 Bài viết
  • Giới tính:Nữ

Đã gửi 19-01-2015 - 18:01

                     ĐỀ THI KHẢO SÁT ĐỘI TUYỂN LỚP 10 KHTN NĂM 2015

 

Câu I: Giải hệ phương trình

$\left\{\begin{matrix} 2x^3+1=3zx & & \\ 2y^3+1=3xy & & \\ 2z^3+1=3yz & & \end{matrix}\right.$

 

Câu II: Cho dãy $\left \{ a_n \right \}$ ( $n\in\mathbb{N^+}$) xác định bởi 

 

$\left\{\begin{matrix} a_1=1,a_2=4 & \\ a_{n+2}=7a_{n+1}-a_n-2 & \end{matrix}\right.$

 

CMR $a_n$ là số chính phương với mọi số nguyên dương $n$

 

Câu III: Cho tam giác $ABC$ có $M,N$ lần lượt thuộc đoạn $CA,AB$ sao cho $MN$ song song với $BC$. $P$ là điểm di chuyển trên đoạn $MN$. Lấy điểm $E$ sao cho $EP\perp AC$ và $EC\perp BC$. Lấy $F$ sao cho $FP\perp AB$ và $FB\perp BC$

 

a) Chứng minh rằng $EF$ luôn đi qua một điểm cố định khi $P$ di chuyển

 

b) Đường thẳng qua $A$ vuông góc $EF$ cắt $BC$ tại $Q$. CMR trung trực $BC$ chia đôi $PQ$

 

c) Gọi $EM$ cắt $FN$ tại $L$. $AQ$ cắt $MN$ tại $R$. Chứng minh rằng $RL\perp BC$

 

Câu IV Cho đa thứ $P(x)$ thỏa mãn $P(0)=2014!$ và $(x-1)P(x-1)=(x-2015)P(x)$. CMR đa thức $(P(x))^2+1$ không thể phân tích thành tích của hai đa thức với hệ số nguyên có bậc lớn hơn hoặc bằng $1$

 

Câu V: Cho $a,b,c,d>0$ và $a+b+c+d=4$. CMR

 

$P=\frac{(a+\sqrt{b})^2}{\sqrt{a^2-ab+b^2}}+\frac{(b+\sqrt{c})^2}{\sqrt{b^2-bc+c^2}}+\frac{(c+\sqrt{d})^2}{\sqrt{c^2-cd+d^2}}+\frac{(d+\sqrt{a})^2}{\sqrt{d^2-ad+a^2}}\leq 16$

 

                                             ____________________Hết______________________



#2 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 19-01-2015 - 18:37

 

                     ĐỀ THI KHẢO SÁT ĐỘI TUYỂN LỚP 10 KHTN NĂM 2015

 

 

 

Câu V: Cho $a,b,c,d>0$ và $a+b+c+d=4$. CMR

 

$P=\frac{(a+\sqrt{b})^2}{\sqrt{a^2-ab+b^2}}+\frac{(b+\sqrt{c})^2}{\sqrt{b^2-bc+c^2}}+\frac{(c+\sqrt{d})^2}{\sqrt{c^2-cd+d^2}}+\frac{(d+\sqrt{a})^2}{\sqrt{d^2-ad+a^2}}\leq 16$

 

                                             ____________________Hết______________________

 

Ta có :$a^2-ab+b^2=\frac{3}{4}(a-b)^2+\frac{1}{4}(a+b)^2\geq \frac{1}{4}(a+b)^2= > \sqrt{a^2-ab+b^2}\geq \frac{a+b}{2}= > \sum \frac{(a+\sqrt{b})^2}{\sqrt{a^2-ab+b^2}}\leq \sum \frac{(a+\sqrt{b})^2}{\frac{a+b}{2}}=2\sum \frac{(a+\sqrt{b})^2}{a+b}\leq 2\sum \frac{(a+1)(a+b)}{a+b}=2\sum (a+1)=2\sum a+8=2.4+8=16= > P\leq 16$

 

Do đó ta có ĐPCM .Dấu = xảy ra khi $a=b=c=d=1$



#3 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 19-01-2015 - 18:44

 

                     ĐỀ THI KHẢO SÁT ĐỘI TUYỂN LỚP 10 KHTN NĂM 2015

 

 

$\left\{\begin{matrix} a_1=1,a_2=4 & \\ a_{n+2}=7a_{n+1}-a_n-2 & \end{matrix}\right.$

 

CMR $a_n$ là số chính phương với mọi số nguyên dương $n$

 

 

 

                                             ____________________Hết______________________

 

Thay $(n,n-1)$ $= > a_{n+1}=7a_{n}-a_{n-1}-2$.Từ đó và từ đề bài 

 

 $= > a_{n+2}-7a_{n+1}+a_{n}=a_{n+1}-7a_{n}+a_{n-1}= > a_{n+2}-8a_{n+1}+8a_{n}-a_{n-1}=0$

 

 Đến đây giải pt đặc trưng là xong



#4 lahantaithe99

lahantaithe99

    Trung úy

  • Thành viên
  • 883 Bài viết
  • Giới tính:Nữ

Đã gửi 19-01-2015 - 18:49

Thay $(n,n-1)$ $= > a_{n+1}=7a_{n}-a_{n-1}-2$.Từ đó và từ đề bài 

 

 $= > a_{n+2}-7a_{n+1}+a_{n}=a_{n+1}-7a_{n}+a_{n-1}= > a_{n+2}-8a_{n+1}+8a_{n}-a_{n-1}=0$

 

 Đến đây giải pt đặc trưng là xong

Giải phương trình đặc trưng mặc dù vẫn ra nhưng xong biến đổi rắc rối hơn. Nên sử dụng dãy phụ $(b_n)$ thỏa mãn $b_n^2=a_n$

$b_1=1,b_2=2,b_3=5,b_{n+1}=3b_{n}-b_{n-1}$

Sau đó chứng minh quy nạp sẽ dẫn đến $b_n^2=a_n$



#5 Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Physics

Đã gửi 19-01-2015 - 18:55

 

                     ĐỀ THI KHẢO SÁT ĐỘI TUYỂN LỚP 10 KHTN NĂM 2015

 

Câu I: Giải hệ phương trình

$\left\{\begin{matrix} 2x^3+1=3zx & & \\ 2y^3+1=3xy & & \\ 2z^3+1=3yz & & \end{matrix}\right.$

 

 

                                             ____________________Hết______________________

 

 Lấy pt (1)-(2) ,(2)-(3),(3-1) $= > \left\{\begin{matrix} 2(x-y)(x^2+xy+y^2)=3x(z-y) & & \\ 2(y-z)(y^2+yz+z^2)=3y(x-z) & & \\ 2(z-x)(z^2+xz+x^2)=3z(y-x) & & \end{matrix}\right.$

Nhân theo vế 

 

 $= > 8(x-y)(y-z)(z-x)\prod (x^2+xy+y^2)=27xyz(x-y)(y-z)(z-x)$

 

Nếu trong 3 tích trên có ít nhất 1 cái = 0 thì x=y hoặ y=z hoặc z=x .Thay vào đê bài rồi giải pt là xong

 

Nếu không có tích nào = 0 thì $8(x^2+xy+y^2)(y^2+yz+z^2)(z^2+xz+x^2)=27xyz$

 

Đến đây Cosi ta CM đc VT>VP  nên vo ly



#6 dogsteven

dogsteven

    Đại úy

  • Thành viên
  • 1567 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên toán Trần Hưng Đạo, Bình Thuận
  • Sở thích:Anti số học.

Đã gửi 19-01-2015 - 20:04

Thay $(n,n-1)$ $= > a_{n+1}=7a_{n}-a_{n-1}-2$.Từ đó và từ đề bài 

 

 $= > a_{n+2}-7a_{n+1}+a_{n}=a_{n+1}-7a_{n}+a_{n-1}= > a_{n+2}-8a_{n+1}+8a_{n}-a_{n-1}=0$

 

 Đến đây giải pt đặc trưng là xong

Nghiệm riêng $a_n^*=\dfrac{2}{5}$

Phương trình đặc trưng: $x^2-7x+1=0 \Rightarrow a_n=c_1.\left(\dfrac{7+3\sqrt{5}}{2}\right)^n+c_2.\left(\dfrac{7-3\sqrt{5}}{2}\right)^2+\dfrac{2}{5}$


Bài viết đã được chỉnh sửa nội dung bởi dogsteven: 19-01-2015 - 20:04

Quyết tâm off dài dài cày hình, số, tổ, rời rạc.


#7 DangHuyNgheAn

DangHuyNgheAn

    Hạ sĩ

  • Thành viên
  • 69 Bài viết
  • Giới tính:Nam
  • Đến từ:Vĩnh thành- Nghệ an.
  • Sở thích:Toán

Đã gửi 19-01-2015 - 21:06

 Lấy pt (1)-(2) ,(2)-(3),(3-1) $= > \left\{\begin{matrix} 2(x-y)(x^2+xy+y^2)=3x(z-y) & & \\ 2(y-z)(y^2+yz+z^2)=3y(x-z) & & \\ 2(z-x)(z^2+xz+x^2)=3z(y-x) & & \end{matrix}\right.$

Nhân theo vế 

 

 $= > 8(x-y)(y-z)(z-x)\prod (x^2+xy+y^2)=27xyz(x-y)(y-z)(z-x)$

 

Nếu trong 3 tích trên có ít nhất 1 cái = 0 thì x=y hoặ y=z hoặc z=x .Thay vào đê bài rồi giải pt là xong

 

Nếu không có tích nào = 0 thì $8(x^2+xy+y^2)(y^2+yz+z^2)(z^2+xz+x^2)=27xyz$

 

Đến đây Cosi ta CM đc VT>VP  nên vo ly

Cosi the nao ha ban???



#8 cachuoi

cachuoi

    Trung sĩ

  • Thành viên
  • 117 Bài viết
  • Giới tính:Nam
  • Đến từ:hà nội
  • Sở thích:chả khoái gì

Đã gửi 19-01-2015 - 21:51

đề này chỉ khó hình
câu hệ xét 2 truờng hợp , nếu x âm thì suy ra y âm suy ra z âm , chia xuống xét hàm f(t)=(2.t^3+1)/3t nghịch biến suy ra x=y=z =-1/2 còn lại 
nếu x y z cùng dương thì ngon rồi giả sử x>=y thì z>=y thì đc ngay z>=x >=y thì lại suy ra y>=x vậy x=y=z =1

đa thức : tính đc f(1) đến f(2014)=0 sau đó đặt f(x)=(x-1)(x-2)...(x-2014).g(x) thì đc g(x-1)=g(x) =c đến đây áp dụng 1 bổ đề quen thuộc về đa thức bkq là ngon rồigiả sử f(x)^2+1 =g(x).h(x) thì g(1).h(1)=g(2)h(2)=...=g(2014).h(2014) =1 chu ý là f(x)^2+1 >0 nên g(x) vs h(x) ko có nghiệm thực vậy 2 cái này chỉ nhận giá trị là 1 hoặc -1 
giả sử h(t)=g(t) =1 với t chạy từ 1 đến 2014 thì dễ suy ra điều vô lý vì đa thức bậc <2014 thì ko thể có 2014 nghiệm được
câu



#9 quanghung86

quanghung86

    Thiếu úy

  • Điều hành viên
  • 632 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Hình học

Đã gửi 21-01-2015 - 08:37

Lời giải câu hình http://analgeomatica...oi-bai-thi.html



#10 Monkeydluffy2k1

Monkeydluffy2k1

    Hạ sĩ

  • Thành viên
  • 75 Bài viết
  • Giới tính:Nam
  • Đến từ:BÍ MẬT
  • Sở thích:TOÁN;HOT GIRL;lý; HÓA

Đã gửi 11-11-2016 - 09:43

câu hệ chia 2 vế cho x rồi đạo hàm chắc cũng ra



#11 nguyenbaohoang0208

nguyenbaohoang0208

    Binh nhì

  • Thành viên mới
  • 13 Bài viết

Đã gửi 29-07-2018 - 11:10

Giải phương trình đặc trưng mặc dù vẫn ra nhưng xong biến đổi rắc rối hơn. Nên sử dụng dãy phụ $(b_n)$ thỏa mãn $b_n^2=a_n$

$b_1=1,b_2=2,b_3=5,b_{n+1}=3b_{n}-b_{n-1}$

Sau đó chứng minh quy nạp sẽ dẫn đến $b_n^2=a_n$

Anh cho em hỏi là làm sao tìm được dãy $b_{n+1}=3b_{n}-b_{n-1}$ này vậy ạ






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh