Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 1 Bình chọn

$C_{n}^{k}$.$C_{m}^{0}$+...+ $C_{n}^{k-m}$.$C_{m}^{m}$=$C_{m+n}^{k}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 ABiHo

ABiHo

    Lính mới

  • Thành viên
  • 4 Bài viết

Đã gửi 24-01-2015 - 15:49

Cho 0 $\leqslant$ m $\leqslant$ k $\leqslant$ n và k,m,n $\in$ N

Chứng minh:

$C_{n}^{k}$.$C_{m}^{0}$ + $C_{n}^{k+1}$.$C_{m}^{1}$ + ... + $C_{n}^{k-m}$.$C_{m}^{m}$ = $C_{m+n}^{k}$

 Xin cám ơn !


Bài viết đã được chỉnh sửa nội dung bởi ABiHo: 24-01-2015 - 16:07


#2 Forgive Yourself

Forgive Yourself

    Sĩ quan

  • Thành viên
  • 473 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K13 - THPT Mai Thúc Loan - Lộc Hà - Hà Tĩnh
  • Sở thích:Toán!

Đã gửi 24-01-2015 - 16:50

Cho 0 $\leqslant$ m $\leqslant$ k $\leqslant$ n và k,m,n $\in$ N

Chứng minh:

$C_{n}^{k}$.$C_{m}^{0}$ + $C_{n}^{k+1}$.$C_{m}^{1}$ + ... + $C_{n}^{k-m}$.$C_{m}^{m}$ = $C_{m+n}^{k}$

 Xin cám ơn !

 

Xét $(1+x)^{m+n}=C^0_{m+n}+C^1_{m+n}x+...+C^k_{m+n}x^k+...+C^{m+n}_{m+n}x^{m+n}$

 

Suy ra hệ số $x^k$ là $C^k_{m+n}$

 

Mà $(1+x)^{m+n}=(1+x)^m(1+x)^n=(C^0_m+C^1_mx+...+C^k_mx^k+...+C^m_mx^m)(C^0_n+C^1_nx+...+C^k_nx^k+...+C^n_nx^n)$

 

Khi nhân hai đa thức trên ta thấy số hạng chứa $x^k$ có dạng:

 

$(C^0_mC^k_n+C^1_mC^{k-1}_n+...+C^m_mC^{k-m}_n)x^k$

 

Hai đa thức trên đồng nhất nên hệ số của số hạng chứa $x^k$ phải bằng nhau, tức là:

 

$C^0_mC^k_n+C^1_mC^{k-1}_n+...+C^m_mC^{k-m}_n=C^k_{m+n}$ ($đpcm$)






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh