Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Tìm CTTQ: ${x_{n + 1}} = \frac{{{x_n}}}{{{{\left( {2n + 1} \right)}^2}{x_n} + 1}}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 tra81

tra81

    Trung sĩ

  • Thành viên
  • 128 Bài viết
  • Giới tính:Nam

Đã gửi 21-03-2015 - 13:59

Tìm công thức số hạng tổng quát của dãy số $\left( {{x_n}} \right)$ xác định bởi

${x_1} = 1,{x_{n + 1}} = \frac{{{x_n}}}{{{{\left( {2n + 1} \right)}^2}{x_n} + 1}},\forall n \ge 1$



#2 Pham Le Yen Nhi

Pham Le Yen Nhi

    Hạ sĩ

  • Thành viên
  • 98 Bài viết
  • Giới tính:Nữ

Đã gửi 01-05-2015 - 22:15

Tìm công thức số hạng tổng quát của dãy số $\left( {{x_n}} \right)$ xác định bởi

${x_1} = 1,{x_{n + 1}} = \frac{{{x_n}}}{{{{\left( {2n + 1} \right)}^2}{x_n} + 1}},\forall n \ge 1$

$x_{n+1}=\frac{x_{n}}{(2n+1)^{2}x_{n}+1}\Rightarrow \frac{1}{x_{n+1}}=\frac{(2n+1)^{2}x_{n}+1}{x_{n}}=(2n+1)^{2}+\frac{1}{x_{n}}$

Đặt $v_{n+1}=\frac{1}{x_{n+1}}\Rightarrow v_{n+1}=(2n+1)^{2}+v_{n}$

Từ đó sử dụng phép thế ta dễ dàng tìm được 

$v_{n+1}=\frac{2n(n+1)(2n+1)}{3}+2n(n+1)+n+1\Rightarrow v_{n}=\frac{2(n-1)n(2n-1)}{3}+2n(n-1)+n$

Vậy $x_{n}=\frac{1}{\frac{2(n-1)n(2n-1)}{3}+2n(n-1)+n}$






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh