Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CM $\frac{GB}{GC}=\frac{HD}{AH+HC}$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 Forgive Yourself

Forgive Yourself

    Sĩ quan

  • Thành viên
  • 473 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K13 - THPT Mai Thúc Loan - Lộc Hà - Hà Tĩnh
  • Sở thích:Toán!

Đã gửi 14-04-2015 - 14:53

Cho tam giác $ABC$ vuông tại $A$ ($AC>AB$), đường cao $AH$. Trên tia $HC$ lấy $D$ sao cho $HD=AH$. Kẻ đường thẳng vuông góc với $BC$ tại $D$ cắt $AC$ tại $E$.
a) CM $2$ tam giác $BEC$ và $ADC$ đồng dạng
b) $M$ là trung điểm $BE$. Tính góc $AHM$
c) Tia $AM$ cắt $BC$ tại $G$. CM $\frac{GB}{BC}=\frac{HD}{AH+HC}$

Bài viết đã được chỉnh sửa nội dung bởi Forgive Yourself: 14-04-2015 - 20:32


#2 hoctrocuaHolmes

hoctrocuaHolmes

    Thượng úy

  • Thành viên
  • 1013 Bài viết
  • Giới tính:Nữ
  • Đến từ:A1K45 PBC
  • Sở thích:Magic Kaito,Holmes,Conan...

Đã gửi 14-04-2015 - 15:17

Cho tam giác $ABC$ vuông tại $A$ ($AC>AB$), đường cao $AH$. Trên tia $HC$ lấy $D$ sao cho $HD=AH$. Kẻ đường thẳng vuông góc với $BC$ tại $D$ cắt $AC$ tại $E$.
a) CM $2$ tam giác $BEC$ và $ADC$ đồng dạng
b) $M$ là trung điểm $BE$. Tính góc $AHM$
c) Tia $AM$ cắt $BC$ tại $G$. CM $\frac{GB}{GC}=\frac{HD}{AH+HC}$

Làm câu a trước đã

a)Dễ dàng chứng minh $\Delta CBA\sim \Delta CED(g.g)\Rightarrow \frac{BC}{CE}=\frac{AC}{CD}\Rightarrow \frac{BC}{AC}=\frac{CE}{CD}$.

từ đó ta có $\Delta BEC\sim \Delta ADC(c.g.c)$



#3 ducvipdh12

ducvipdh12

    Sĩ quan

  • Thành viên
  • 454 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Lê Quý Đôn-Quảng Trị
  • Sở thích:ANIME IS LOVE,ANIME IS LIFE

Đã gửi 14-04-2015 - 15:51

câu b $\widehat{AHM}=45^{\circ}$ bằng cách chứng minh ABE là tam giác vuông cân và A,B,H,M đồng viên 


FAN THẦY THÔNG,ANH CẨN,THẦY VINH :icon6: :icon6:

#4 hoanglong2k

hoanglong2k

    Trung úy

  • Điều hành viên THCS
  • 965 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình

Đã gửi 14-04-2015 - 16:56

Câu c phải là $\frac{GB}{GC}=\frac{HD}{AH+CD}$ chứ

Biến đổi kết luận 1 tí nào 

Ta có: $\frac{GB}{GC}=\frac{HD}{AH+CD}\Leftrightarrow \frac{AB}{AC}=\frac{HD}{HD+CD}\Rightarrow \frac{AE}{AC}=\frac{HD}{HC}$

 ( luôn đúng theo Ta-lét )



#5 Forgive Yourself

Forgive Yourself

    Sĩ quan

  • Thành viên
  • 473 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K13 - THPT Mai Thúc Loan - Lộc Hà - Hà Tĩnh
  • Sở thích:Toán!

Đã gửi 14-04-2015 - 20:31

Câu c phải là $\frac{GB}{GC}=\frac{HD}{AH+CD}$ chứ
Biến đổi kết luận 1 tí nào
Ta có: $\frac{GB}{GC}=\frac{HD}{AH+CD}\Leftrightarrow \frac{AB}{AC}=\frac{HD}{HD+CD}\Rightarrow \frac{AE}{AC}=\frac{HD}{HC}$
( luôn đúng theo Ta-lét )


Xin lỗi, mk nhầm. Chứng minh $\frac{GB}{BC}=\frac{HD}{AH+HC}$




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh