Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Một giả thuyết về bất đẳng thức trong không gian m chiều


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Oai Thanh Dao

Oai Thanh Dao

    Hạ sĩ

  • Thành viên
  • 70 Bài viết

Đã gửi 27-04-2015 - 08:27

Cho $X_1,X_2,X_3,.....,X_n$ là $n$ điểm trên mặt cầu trong không gian Euclid m chiều. Khi đó chúng tôi  đưa ra giả thiết sau:
 
$$\prod_{i,j}^{C_n^2}||X_i-X_j|| \leq n^{f(n,m)} ||r||^{C_n^2}$$
 
Trong đó: $r$ là bán kính mặt cầu
 

Dấu bằng xảy ra khi các điểm $X_1,X_2,X_3....,X_n$ thỏa mãn điều kiện gì sẽ được chúng tôi làm rõ?

 

Biểu thức quan hệ $f(n,m)$ sẽ được chúng tôi làm rõ?

 
Tác giả: Đào Thanh Oai và Quang Dương

 

Giả thuyết trên được chúng tôi phát triển từ bất đẳng thức quen thuộc trong hình học tam giác:

 

$\sin A.\sin B. \sin C \leq 3.\sqrt{3}/8$


Bài viết đã được chỉnh sửa nội dung bởi Oai Thanh Dao: 27-04-2015 - 16:55


#2 Oai Thanh Dao

Oai Thanh Dao

    Hạ sĩ

  • Thành viên
  • 70 Bài viết

Đã gửi 27-04-2015 - 17:09

Với không gian hai chiều $f(n,m)=\frac{n}{m}=\frac{n}{2}$ 






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh