Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CMR: $AP \geqslant AI$ và ...


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Dung Du Duong

Dung Du Duong

    Sĩ quan

  • Thành viên
  • 426 Bài viết
  • Giới tính:Nam
  • Đến từ:Học viện Kĩ thuật quân sự - MTA
  • Sở thích:Lập trình

Đã gửi 03-05-2015 - 22:05

Làm 1 bài tặng 10 likes  :lol:  :lol:  :lol:  :namtay 

 

1. Cho tam giác ABC, I là tâm nội tam giác, điểm P nằm trong tam giác / (góc)PBA+PCA=PCB+PBC. CMR: $AP \geqslant AI$

2. Cho tam giác ABC nội tiếp (O) và D nằm trên BC. CMR: Các đường tròn tiếp xúc với (O), AD và BD; đường tròn tiếp xúc với (O),AC và DC : tiếp xúc với nhau khi và chỉ khi (góc) BAD=CAD


Bài viết đã được chỉnh sửa nội dung bởi Dung Du Duong: 03-05-2015 - 22:06

              

              

                                                                               

 

 

 

 

 

 

 


#2 Pham Le Yen Nhi

Pham Le Yen Nhi

    Hạ sĩ

  • Thành viên
  • 98 Bài viết
  • Giới tính:Nữ

Đã gửi 04-05-2015 - 00:01

 

Làm 1 bài tặng 10 likes  :lol:  :lol:  :lol:  :namtay 

 

1. Cho tam giác ABC, I là tâm nội tam giác, điểm P nằm trong tam giác / (góc)PBA+PCA=PCB+PBC. CMR: $AP \geqslant AI$

Giả sử $AB\leq AC$

Ta có 

$\widehat{PBA}+\widehat{PCA}=(180^{\circ}-\widehat{PAB}-\widehat{APB})+(180^{\circ}-\widehat{PAC}-\widehat{APC})=(360^{\circ}-\widehat{APB}-\widehat{APC})-\widehat{BAC}=\widehat{BPC}-\widehat{BAC}$

Mà $\widehat{PBA}+\widehat{PCA}=\widehat{PCB}+\widehat{PBC}$

$\Rightarrow \widehat{BPC}-\widehat{BAC}=\widehat{PBC}+\widehat{PCB}$

$\Rightarrow \widehat{BPC}-\widehat{BAC}=180^{\circ}-\widehat{BPC}$

$\Rightarrow \widehat{BPC}=90^{\circ}+\frac{\widehat{BAC}}{2}$

Vẽ đường tròn ngoại tiếp $\Delta BIC$ cắt $AC$ tại $N$

Dễ thấy $P$ thuộc cung nhỏ $BN$ ( do $P$ nằm trong tam giác)

Gọi $M$ là giao điểm của $AI$ và $BN$.

Ta chứng minh được $\Delta ABN$ cân $\Rightarrow$ $AI$ vuông góc với $BN$ 

Lấy điểm $P'$ bất kì thuộc cung nhỏ $BN$

Gọi $K$ là chân đường vuông góc kẻ từ $P'$ xuống $BN$

Đặt $a$ là khoảng cách từ $P'$ đến $BN$.

Ta có $AI=AM-IM\leq AK-a\leq AP'$

Từ đó ta suy ra điều cần chứng minh

p/s: Bạn tự vẽ hình nha :))


Bài viết đã được chỉnh sửa nội dung bởi Pham Le Yen Nhi: 04-05-2015 - 00:03





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh