Đến nội dung

Hình ảnh

ĐỀ THI OLYMPIC CHUYÊN KHOA HỌC TỰ NHIÊN NĂM 2015


  • Please log in to reply
Chủ đề này có 26 trả lời

#21
buivantuanpro123

buivantuanpro123

    Hạ sĩ

  • Thành viên
  • 96 Bài viết

cho mình hỏi $v_{p}(...)$ là gì vậy



#22
buivantuanpro123

buivantuanpro123

    Hạ sĩ

  • Thành viên
  • 96 Bài viết

Bài số học có thể giải như sau:

Xét một số nguyên tố $p$ bất kì $p\leq n$

TH1: $p|b$ thì $v_p(b^n.a.(a+b)...(a+(n-1)b)) \geq n$ trong khi $v_p(n!)=\frac{n-S_{p}(n)}{p-1}$ với $S_{p}(n)$ là tổng cs của $n$ trong cơ số $p$

Rõ ràng $v_p(n!)=\frac{n-S_{p}(n)}{p-1}<n$ nên ta có ngay $v_p(b^n.a.(a+b)...(a+(n-1)b))>v_p(n!)$

TH2: $(b,p)=1$ khi đó gọi $v_p(n!)=k$ thì do $(b,p)=1 \rightarrow (b,p^k)=1$ khi đó theo định lý Bezout, ta có tồn tại $c$ sao cho $bc \equiv 1 \pmod{p^k}$ thì do $(b,p)=1 \rightarrow (c,p)=1$

Khi đó ta cần cm

$$p^k|b^n.a.(a+b)...(a+(n-1)b)$$

$$\leftrightarrow p^k|a.(a+b)...(a+(n-1)b)$$

$$\leftrightarrow p^k|a.(a+b)...(a+(n-1)b).c^n$$

$$\leftrightarrow p^k|(ac+0.bc)(ac+1.bc)...(ac+(n-1)bc)$$

$$\leftrightarrow p^k|ac(ac+1)(ac+2)...(ac+n-1)$$ $(1)$

(do $bc \equiv 1 \pmod{p^k}$ )

Như vậy, ta có $\dfrac{ac(ac+1)(ac+2)...(ac+n-1)}{n!}=\binom{ac+n-1}{n}$ là số nguyên do đó $n!|ac(ac+1)(ac+2)...(ac+n-1)$ hay $(1)$ đúng vì $p^k||n!$

Như vậy qua cả 2 Th ta suy ra ngay với $p$ nguyên tố $p\leq n$ thì $p^{v_p(n!)}|b^n.a.(a+b)...(a+(n-1)b) \rightarrow n!|b^n.a.(a+b)...(a+(n-1)b)$ đpcm

 

P/S bài này đã từng có trong các giờ học đội dự tuyển và đội tuyển của KHTN khóa anh Hoàn, anh Đăng, đề năm nay quả thực có format rất giống thi quốc tế

cho mình hỏi $v_{p}(...)$ là gì vậy



#23
buivantuanpro123

buivantuanpro123

    Hạ sĩ

  • Thành viên
  • 96 Bài viết

Đáp án chính thức bài hình

 

a) Dễ thấy tam giác $SAI$ và $DTJ$ cân và có $\angle ASI=\angle DTJ$ nên hai tam giác đó dồng dạng. Lại dễ chứng minh tứ giác $AIJD$ nội tiếp nên $\angle MAI=\angle IAD=\angle DJN$ và $\angle NDJ=\angle JDA=\angle AIM$. Từ đó hai tam giác $MAI$ và $NJD$ đồng dạng. Từ đó suy ra $SMA$ và $TNJ$ đồng dạng. Vậy $\angle ASM=\angle NTJ$ do đó $SM$ và $TN$ cắt nhau tại $E$ trên đường tròn $(O)$.

 

b) Gọi $AB$ cắt $CD$ tại $G$. $GE$ cắt $(O)$ tại $F$ khác $E$. Ta thấy $GC.GD=GE.GF=GM.GQ$. Từ đó tứ giác $MQFE$ nội tiếp nên $\angle QFE=\angle AME=\angle MAS+\angle MSA=\angle MBS+\angle AFE=\angle SFA+\angle ASE=\angle EFS$. Từ đó $S,Q,F$ thẳng hàng. Tương tự $T,P,F$ thẳng hàng. Từ chứng minh trên $SMA$ và $TNJ$ đồng dạng nên tam giác $GMN$ cân suy ra $GM=GN$. Lại có $GM.GQ=GN.GP$ nên $GP=GQ$ suy ra $PQ\parallel MN\parallel ST$. Từ đó đường tròn nội tiếp tam giác $FPQ$ tiếp xúc $(O)$. Vậy theo định lý Poncelet nếu $PQ$ cắt $DB,AC$ tại $U,V$ thì đường tròn ngoại tiếp tam giác $FUV$ cũng tiếp xúc $(O)$ và tiếp xúc $DB,AC$. Từ đó theo định lý Thebault thì $PQ$ đi qua tâm nội tiếp hai tam giác $ABC$ và $DBC$.

Figure3047.jpg?_subject_uid=254948813&w=
cho mình hỏi định lý Poncelet là gì vậy



#24
nhungvienkimcuong

nhungvienkimcuong

    Thiếu úy

  • Hiệp sỹ
  • 675 Bài viết

cho mình hỏi $v_{p}(...)$ là gì vậy

đó là kí hiệu cho số mũ nguyên tố đúng

còn định lý $\text{Poncelet}$ bạn tham khảo thêm ở đây


Đừng khóc vì chuyện đã kết thúc hãy cười vì chuyện đã xảy ra ~O) 
Thật kì lạ anh không thể nhớ đến tên mình mà chỉ nhớ đến tên em :wub:
Chúa tạo ra vũ trụ của con người còn em tạo ra vũ trụ của anh :ukliam2:


#25
buivantuanpro123

buivantuanpro123

    Hạ sĩ

  • Thành viên
  • 96 Bài viết

đó là kí hiệu cho số mũ nguyên tố đúng

còn định lý $\text{Poncelet}$ bạn tham khảo thêm ở đây

bạn có thẻ phát biểu định lý Poncelet, rồi chứng minh được không.Mình cảm ơn nhiều



#26
dkhanhht

dkhanhht

    Lính mới

  • Thành viên
  • 3 Bài viết

Bài số học năm nay khá nhẹ nhàng:
Bài 1: (vắn tắt) $3^p+4^p=x^2 \rightarrow 3^p=(x-2^p)(x+2^p) \rightarrow x-2^p=3^m,x+2^p=3^n \rightarrow 2^{p+1}=3^n-3^m \rightarrow m=0,n=p$ (xét mod(3))
Suy ra ngay được $2^{p+1}=3^p-1$ nếu $p>3$ dùng Fermat bé suy ra ngay vô lý, còn $p\le 3$ thì $p=2$ thỏa mãn

Bài 3: Quy ước 1x3 là quân nằm ngang và 3x1 nằm dọc
Chia bàn cờ ra thành $671$ cụm 3x3 và một cụm 3x2, gọi các cụm này là $C_1,.,C_{671}$, riêng cụm 3x2 không quan tâm, ta khẳng định bạn $A$ thắng như sau: đầu tiên $A$ đặt quân 1x3 vào $C_1$ (có thể nằm ở hàng trên cùng, giữa hoặc cuối của $C_1$ không quan trọng vì sau khi đặt vào thì $B$ ko thể đặt quân 3x1 nào vào cụm đó nữa) sau đó do bạn $B$ chỉ đặt 3x1 (tức quân nằm dọc) giả sử quân đó thuộc $C_i$ nào đó thì $A$ chỉ cần không đặt quân 1x3 bị chèn vào $C_i$ đó, mà cụ thể $A$ đặt 1x3 vào một $C_j$ khác với $j$ khác $i$, khi đó ta có ngay được $A$ sẽ luôn chiếm giữ được ít nhất $\dfrac{671+1}{2}=336$ cụm 3x3 trong khi $B$ chỉ chiếm giữ được tối đa $335$ cụm 3x3 (do A đi trước), như vậy việc còn lại là hoàn thành các cụm 3x3 thì $A$ có thể hoàn thành với ít nhất $336x3=1008$ quân 1x3 trong khi $B$ chỉ hoàn thành tối đa $2015-1008=1007$ quân 3x1 (cho dù $B$ chiếm giữ cụm 3x2 thừa ra thì vẫn chỉ thu được tối đa 1007 quaan3x1) tức là $A$ thắng (vì đến lúc B sẽ không đặt được nữa trước khi $A$ không đặt được !)

P/S qua cách giải này ta có thể thấy nếu bàn cờ 3xn với $n=6k+t$ với $t$ lẻ thì $A$ sẽ thắng


Mình nghĩ phải là t bằng 3, 4, 5, 6 An thắng chứ.

#27
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

Xét $p=2$ => $x=5$

Xét $p\neq 2$
$3^p+4^p=x^2\Leftrightarrow (3+4)(3^{p-1}-3^{p-2}.4+...-3.4^{p-2}+4^{p-1})=x^{2}$
nên $x^{2}$ chia hết cho 7
Suy ra $(3^{p-1}-3^{p-2}.4+...-3.4^{p-2}+4^{p-1})$ chia hết cho 7
Mà $4\equiv -3(mod 7)$ nên $3^{p-1}-3^{p-2}.4+...-3.4^{p-2}+4^{p-1} \equiv 3^{p-1}-3^{p-2}.(-3)+...-3.(-3)^{p-2}+(-3)^{p-1}=p.3^{p-1}$ chia hết cho 7
Suy ra p=7. suy ra $n^{2}=3^{7}+4^{7}$( không tồn tại n thỏa mãn)

Vậy $p=2$

Chưa kỹ lắm




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh