Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$7ab+a\mid a^3+(7b+1)^3+7^na$

composed by juliel

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Juliel

Juliel

    Thượng úy

  • Thành viên
  • 1240 Bài viết
  • Giới tính:Nam
  • Đến từ:Đại học Ngoại thương TP.HCM
  • Sở thích:Đam mỹ

Đã gửi 20-06-2015 - 15:24

Cho $a,b,n$ là các số nguyên dương thoả mãn :

$$7ab+a\mid a^3+(7b+1)^3+7^na$$

Chứng minh $a$ là lập phương của một số nguyên dương.


Bài viết đã được chỉnh sửa nội dung bởi Juliel: 20-06-2015 - 15:26

Đừng rời xa tôi vì tôi lỡ yêu người mất rồi !
 

Welcome to My Facebook !


#2 Karl Heinrich Marx

Karl Heinrich Marx

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam

Đã gửi 25-06-2015 - 07:12

Cho $a,b,n$ là các số nguyên dương thoả mãn :

$$7ab+a\mid a^3+(7b+1)^3+7^na$$

Chứng minh $a$ là lập phương của một số nguyên dương.

Từ đề bài có thể suy ra $a|(7b+1)^3$, do đó với $p$ nguyên tố bất kì mà $p|a \Rightarrow p|7b+1 \Rightarrow p \ne 7$ nên $(p,7^n)=1$

Vì $a|(7b+1)^3$ nên $v_p((7b+1)^3) \ge v_p(a)=v_p(7^na)$ Dễ thấy $v_p(a(7b+1))>v_p(a),v_p(a^3)>v_p(a) \Rightarrow v_p(a)=v_p((7b+1)^3) \vdots 3$

Đây là đpcm.







Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: composed by juliel

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh