Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

cho $a$,$b$,$c$$\geqslant$0 và $a^2$+$b^2$+$c^2$=3. tìm giá trị nhỏ nhất của biểu thức

bất đẳng thức và cực tri

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 ngobaochau1704

ngobaochau1704

    Trung sĩ

  • Thành viên
  • 105 Bài viết
  • Giới tính:Nam
  • Sở thích:học toán, xem Manchester United đá

Đã gửi 22-06-2015 - 09:00

cho $a$,$b$,$c$$\geqslant$0 và $a^2$+$b^2$+$c^2$=3. tìm giá trị nhỏ nhất của biểu thức:

$\frac{a^3}{\sqrt{1+b^2}}$+$\frac{b^3}{\sqrt{1+c^2}}$+$\frac{c^3}{\sqrt{1+a^2}}$


Bài viết đã được chỉnh sửa nội dung bởi ngobaochau1704: 22-06-2015 - 09:01


#2 Hoang Nhat Tuan

Hoang Nhat Tuan

    Hỏa Long

  • Thành viên
  • 974 Bài viết
  • Giới tính:Nam
  • Đến từ:11 Toán, THPT chuyên Võ Nguyên Giáp, Quảng Bình
  • Sở thích:Geometry, Combinatorial

Đã gửi 22-06-2015 - 09:13

cho $a$,$b$,$c$$\geqslant$0 và $a^2$+$b^2$+$c^2$=3. tìm giá trị nhỏ nhất của biểu thức:

$\frac{a^3}{\sqrt{1+b^2}}$+$\frac{b^3}{\sqrt{1+c^2}}$+$\frac{c^3}{\sqrt{1+a^2}}$

Dễ mà:

$P\geq \frac{(a^2+b^2+c^2)^2}{\sum a\sqrt{1+b^2}}$

Lại có: $\sum 2\sqrt{2} a\sqrt{1+b^2}\leq\sum ( 2a^2+1+b^2)=3(a^2+b^2+c^2)+3$

Từ đó thay vào là tìm được GTNN :D


Bài viết đã được chỉnh sửa nội dung bởi Hoang Nhat Tuan: 22-06-2015 - 09:22

Ngài có thể trói cơ thể tôi, buộc tay tôi, điều khiển hành động của tôi: ngài mạnh nhất, và xã hội cho ngài thêm quyền lực; nhưng với ý chí của tôi, thưa ngài, ngài không thể làm gì được.

#3 anh1999

anh1999

    Sĩ quan

  • Thành viên
  • 355 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT lê hữu Trác-Hương sơn-Hà tĩnh

Đã gửi 22-06-2015 - 09:15

cho $a$,$b$,$c$$\geqslant$0 và $a^2$+$b^2$+$c^2$=3. tìm giá trị nhỏ nhất của biểu thức:

$\frac{a^3}{\sqrt{1+b^2}}$+$\frac{b^3}{\sqrt{1+c^2}}$+$\frac{c^3}{\sqrt{1+a^2}}$

ta có 

$\frac{a^3}{\sqrt{1+b^2}}+\frac{b^3}{\sqrt{1+c^2}}+\frac{c^3}{\sqrt{1+a^2}}=\frac{a^4}{a\sqrt{1+b^2}}+\frac{b^4}{b\sqrt{1+c^2}}+\frac{c^4}{\sqrt{1+a^2}}$

 

$\geq \frac{(a^2+b^2+c^2)^2}{a\sqrt{1+b^2}+b\sqrt{1+c^2}+c\sqrt{1+a^2}}\geq \frac{9}{\sqrt{(a^2+b^2+c^2)(3+a^2+b^2+c^2)}}=\frac{9}{3\sqrt{2}}=\frac{3\sqrt{2}}{2}$

dấu = xảy ra khi a=b=c=1


Trần Quốc Anh






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh