Jump to content

Photo

$$\frac{a^2-bc}{b^2+c^2+ka^2}+\frac{b^2-ac}{c^2+a^2+kb^2}+\frac{c^2-ab}{a^2+b^2+kc^2}\geq 0$$

* * * * - 1 votes

  • Please log in to reply
6 replies to this topic

#1
the man

the man

    Thiếu úy

  • Thành viên
  • 589 posts

Bài toán:

Tìm hằng số  $k$  tốt nhất để bất đẳng thức sau đúng với  $a,b,c>0$ :

$$\frac{a^2-bc}{b^2+c^2+ka^2}+\frac{b^2-ac}{c^2+a^2+kb^2}+\frac{c^2-ab}{a^2+b^2+kc^2}\geq 0$$


"God made the integers, all else is the work of man."

                                                Leopold Kronecker


#2
Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 posts

Bài toán:

Tìm hằng số  $k$  tốt nhất để bất đẳng thức sau đúng với  $a,b,c>0$ :

$$\frac{a^2-bc}{b^2+c^2+ka^2}+\frac{b^2-ac}{c^2+a^2+kb^2}+\frac{c^2-ab}{a^2+b^2+kc^2}\geq 0$$

- Chọn $a=1,b=\frac{1}{x},c=x (x> 0)$

 

 BĐT $\frac{a^2-bc}{b^2+c^2+ka^2}+\frac{b^2-ac}{a^2+c^2+kb^2}+\frac{c^2-ab}{a^2+b^2+kc^2}\geq 0$

$< = > \frac{1-x.\frac{1}{x}}{\frac{1}{x^2}+x^2+k.1^2}+\frac{\frac{1}{x^2}-x.1}{1^2+x^2+\frac{k}{x^2}}+\frac{x^2-1.\frac{1}{x}}{1+\frac{1}{x^2}+kx^2}\geq 0$

$< = >0+ \frac{1-x^3}{x^4+x^2+k}+\frac{x(x^3-1)}{kx^4+x^2+1}\geq 0$

$< = > (x^3-1)(\frac{x}{kx^4+x^2+1}-\frac{1}{x^4+x^2+k})\geq 0$  (1)

 

 Mà $\frac{x}{kx^4+x^2+1}-\frac{1}{x^4+x^2+k}=\frac{x^5+x^3-x^2-1-k(x^4-x)}{(kx^4+x^2+1)(x^4+x^2+k)}=\frac{(x-1)(x^4+x^3+2x^2+x+1-kx(x^2+x+1))}{(kx^4+x^2+1)(x^4+x^2+k)}$

 

  Do đó $(1)< = > (x^3-1)(\frac{(x-1)(x^4+x^3+2x^2+x+1-kx(x^2+x+1))}{(kx^4+x^2+1)(x^4+x^2+k)})\geq 0$

$< = > (x-1)^2(x^2+x+1).\frac{x^4+x^3+2x^2+x+1-kx(x^2+x+1)}{(kx^4+x^2+1)(x^4+x^2+k)}\geq 0$

$= > x^4+x^3+2x^2+x+1-kx(x^2+x+1)\geq 0= > k\leq \frac{x^4+x^3+2x^2+x+1}{x^3+x^2+x}$

  -Cho $b\rightarrow c= > \frac{1}{x}\rightarrow x= > x\rightarrow 1$

 

  Từ đó $= > k\leq \lim_{x\rightarrow 1}\frac{x^4+x^3+2x^2+x+1}{x^3+x^2+x}=\lim_{x\rightarrow 1}(\frac{x(x^3+x^2+x)+(x^2+x+1)}{x^3+x^2+x})=\lim_{x\rightarrow 1}(x+\frac{1}{x})=2$ 

 

   Từ đó $= > k\leq 2$ ,Ta chứng minh đó là hằng số tốt nhất  thỏa mãn bài toán 

 

 Thay $k=2$ vào BĐT

 

 $< = > \sum \frac{a^2-bc}{b^2+c^2+2a^2}\geq 0< = > \sum \frac{2a^2-2bc}{b^2+c^2+2a^2}\geq 0$

$< = > \sum \frac{2a^2+b^2+c^2-(b+c)^2}{b^2+c^2+2a^2}\geq 0$

$< = > \sum \frac{(b+c)^2}{b^2+c^2+2a^2}\leq 3$

 

 Theo Cauchy-Swacth có :$\sum \frac{(b+c)^2}{(b^2+a^2)+(c^2+a^2)}\leq \sum \frac{b^2}{b^2+a^2}+\sum \frac{c^2}{a^2+c^2}$

$=\sum \frac{b^2}{a^2+b^2}+\sum \frac{a^2}{a^2+b^2}=\sum \frac{a^2+b^2}{a^2+b^2}=3$

         Do đó ta có ĐPCM.

 

      Vậy $k_{max}=2$ thỏa mãn bài toán


Edited by Hoang Tung 126, 26-06-2015 - 07:19.


#3
Lam Ba Thinh

Lam Ba Thinh

    Hạ sĩ

  • Thành viên
  • 86 posts

- Chọn $a=1,b=\frac{1}{x},c=x (x> 0)$

 

 BĐT $\frac{a^2-bc}{b^2+c^2+ka^2}+\frac{b^2-ac}{a^2+c^2+kb^2}+\frac{c^2-ab}{a^2+b^2+kc^2}\geq 0$

$< = > \frac{1-x.\frac{1}{x}}{\frac{1}{x^2}+x^2+k.1^2}+\frac{\frac{1}{x^2}-x.1}{1^2+x^2+\frac{k}{x^2}}+\frac{x^2-1.\frac{1}{x}}{1+\frac{1}{x^2}+kx^2}\geq 0$

$< = >0+ \frac{1-x^3}{x^4+x^2+k}+\frac{x(x^3-1)}{kx^4+x^2+1}\geq 0$

$< = > (x^3-1)(\frac{x}{kx^4+x^2+1}-\frac{1}{x^4+x^2+k})\geq 0$  (1)

 

 Mà $\frac{x}{kx^4+x^2+1}-\frac{1}{x^4+x^2+k}=\frac{x^5+x^3-x^2-1-k(x^4-x)}{(kx^4+x^2+1)(x^4+x^2+k)}=\frac{(x-1)(x^4+x^3+2x^2+x+1-kx(x^2+x+1))}{(kx^4+x^2+1)(x^4+x^2+k)}$

 

  Do đó $(1)< = > (x^3-1)(\frac{(x-1)(x^4+x^3+2x^2+x+1-kx(x^2+x+1))}{(kx^4+x^2+1)(x^4+x^2+k)})\geq 0$

$< = > (x-1)^2(x^2+x+1).\frac{x^4+x^3+2x^2+x+1-kx(x^2+x+1)}{(kx^4+x^2+1)(x^4+x^2+k)}\geq 0$

$= > x^4+x^3+2x^2+x+1-kx(x^2+x+1)\geq 0= > k\leq \frac{x^4+x^3+2x^2+x+1}{x^3+x^2+x}$

  -Cho $b\rightarrow c= > \frac{1}{x}\rightarrow x= > x\rightarrow 1$

 

  Từ đó $= > k\leq \lim_{x\rightarrow 1}\frac{x^4+x^3+2x^2+x+1}{x^3+x^2+x}=\lim_{x\rightarrow 1}(\frac{x(x^3+x^2+x)+(x^2+x+1)}{x^3+x^2+x})=\lim_{x\rightarrow 1}(x+\frac{1}{x})=2$ 

 

   Từ đó $= > k\leq 2$ ,Ta chứng minh đó là hằng số tốt nhất  thỏa mãn bài toán 

 

 Thay $k=2$ vào BĐT

 

 $< = > \sum \frac{a^2-bc}{b^2+c^2+2a^2}\geq 0< = > \sum \frac{2a^2-2bc}{b^2+c^2+2a^2}\geq 0$

$< = > \sum \frac{2a^2+b^2+c^2-(b+c)^2}{b^2+c^2+2a^2}\geq 0$

$< = > \sum \frac{(b+c)^2}{b^2+c^2+2a^2}\leq 3$

 

 Theo Cauchy-Swacth có :$\sum \frac{(b+c)^2}{(b^2+a^2)+(c^2+a^2)}\leq \sum \frac{b^2}{b^2+a^2}+\sum \frac{c^2}{a^2+c^2}$

$=\sum \frac{b^2}{a^2+b^2}+\sum \frac{a^2}{a^2+b^2}=\sum \frac{a^2+b^2}{a^2+b^2}=3$

         Do đó ta có ĐPCM.

 

      Vậy $k_{max}=2$ thỏa mãn bài toán

Cho em hỏi phương phap để giải những bài dạng này là gì vậy anh?



#4
Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 posts

Cho em hỏi phương phap để giải những bài dạng này là gì vậy anh?

ầ ,em cứ thử chọn để đưa về 2 ẩn ,trong đó có 1 ẩn k là được



#5
Lam Ba Thinh

Lam Ba Thinh

    Hạ sĩ

  • Thành viên
  • 86 posts

ầ ,em cứ thử chọn để đưa về 2 ẩn ,trong đó có 1 ẩn k là được.

Cảm ơn anh, anh có những dạng toán giải theo Phương pháp này không ạ. Nếu có cho em xin tài liệu ạ.



#6
Hoang Tung 126

Hoang Tung 126

    Thiếu tá

  • Thành viên
  • 2061 posts

Cảm ơn anh, anh có những dạng toán giải theo Phương pháp này không ạ. Nếu có cho em xin tài liệu ạ.

Anh có ,để mai anh chuyển link cho nhé!!



#7
Lam Ba Thinh

Lam Ba Thinh

    Hạ sĩ

  • Thành viên
  • 86 posts

Anh có ,để mai anh chuyển link cho nhé!!

Cảm ơn anh!






1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users