Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CMR: $\widehat{A}=90^{o}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 bonna

bonna

    Binh nhất

  • Thành viên
  • 40 Bài viết

Đã gửi 09-07-2015 - 22:49

Cho tam giác ABC. Đường cao AH. $p,p_{1},p_{2}$ là chu vi các tam giác ABC, ABH, ACH thỏa mãn: $p^2=p_{1}^2+p_{2}^2$. CMR: $\widehat{A}=90^{o}$



#2 chatditvit

chatditvit

    Binh nhất

  • Thành viên
  • 44 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Toán

Đã gửi 11-07-2015 - 08:18

Dùng phản chứng bạn à



#3 aristotle pytago

aristotle pytago

    Sĩ quan

  • Thành viên
  • 383 Bài viết
  • Giới tính:Nam
  • Đến từ:trường tiểu học võ nguyên giáp
  • Sở thích:học những môn mà bản thân không thích học

Đã gửi 11-07-2015 - 09:03

chú giải rõ bằng phản chứng đi cho mọi người biết



#4 chatditvit

chatditvit

    Binh nhất

  • Thành viên
  • 44 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Toán

Đã gửi 11-07-2015 - 22:17

 Giả sử phản chứng:$\widehat{A}\neq 90^{^{o}}$.

TH1: $\widehat{B},\widehat{C},\widehat{A}<90^{o}$.

Vẽ góc vuông DAC trên nửa mặt phẳng bờ AC chứa B và D,B,C thẳng hàng. Đặt $p(DAC)=p';p(DAH)=p'_{1}$.

Ta có:$$\left\{\begin{matrix} p^2=p_{1}^{2}+p_{2}^{2} & & \\ p'^{2}=p'_{1}^{2}+p_{2}^2 & & \end{matrix}\right \Rightarrow (p'-p)(p'+p)=(p'_{1}-p_{1})(p'_{1}+p_{1}) \Rightarrow p'+p=p'_{1}+p_{1}$$

TH2:$\widehat{B},\widehat{C}<90^{o};\widehat{A}>90^{o}$. Tương tự trường hợp trên ta thấy mâu thuẫn.

TH3:$\widehat{B},\widehat{C}>90^{o}: p_{2}^2>p^2\Rightarrow p_{1}^2<0$(mâu thuẫn).

Vậy giả thiết phản chứng sai.

$\Rightarrow Q.E.D$

 


Bài viết đã được chỉnh sửa nội dung bởi chatditvit: 11-07-2015 - 23:05





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh