Cho $a,b,c\geq 0$ thỏa mãn $a+b+c\geq 12$
Tìm GTNN của $P=\sum \frac{a^{3}}{\sqrt{ab}+2\sqrt{1+c\sqrt{c}}}$
Đã gửi 24-07-2015 - 21:47
Cho $a,b,c\geq 0$ thỏa mãn $a+b+c\geq 12$
Tìm GTNN của $P=\sum \frac{a^{3}}{\sqrt{ab}+2\sqrt{1+c\sqrt{c}}}$
THPT PHÚC THÀNH K98
Cuộc sống luôn không ngừng đổi thay, chỉ có tình yêu là luôn ở đó, vẹn tròn và bất diệt. Chính vì thế tôi thay đổi để giữ điều ấy, để tốt hơn từng ngày
Thay đổi cho những điều không bao giờ đổi thay
Học toán trên facebook:https://www.facebook...48726405234293/
My facebook:https://www.facebook...amHongQuangNgoc
Đã gửi 24-07-2015 - 22:19
Cho $a,b,c\geq 0$ thỏa mãn $a+b+c\geq 12$
Tìm GTNN của $P=\sum \frac{a^{3}}{\sqrt{ab}+2\sqrt{1+c\sqrt{c}}}$
$P=\sum \frac{a^3}{\sqrt{ab}+2\sqrt{(\sqrt{c}+1)(c-\sqrt{c}+1)}}\geqslant \sum \frac{a^3}{\sqrt{ab}+c+2}\geqslant \sum \frac{a^3}{\frac{a+b}{2}+c+2}\geqslant \frac{(\sum a^2)^2}{\frac{\sum a^2+3\sum ab}{2}+2\sum a}\geqslant \frac{(\sum a^2)^2}{\frac{9}{4}.\sum a^2+12}=\frac{t^2}{\frac{9}{4}t+12}\geqslant \frac{96}{5}\Leftrightarrow (t-48)(t+4.8)\geqslant 0(true:t=\sum a^2\geqslant \frac{(\sum a)^2}{3}\geqslant 48)$
Cuộc sống giống như một cuốn sách. Một vài chương khá buồn, một số chương hạnh phúc và một số chương rất thú vị. Nhưng nếu bạn chưa bao giờ lật thử một trang bạn sẽ không bao giờ biết những gì ở chương tiếp theo!
Toán thi Học sinh giỏi và Olympic →
Bất đẳng thức - Cực trị →
Các bài toán và vấn đề về Bất đẳng thức →
$\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{1}{2}\geq \frac{12abc}{(a+b)(b+c)(c+a)}$Bắt đầu bởi bachthaison, 26-11-2020 ![]() |
|
![]() |
||
Toán Trung học Cơ sở →
Bất đẳng thức và cực trị →
$\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{1}{2}\geq \frac{12abc}{(a+b)(b+c)(c+a)}$Bắt đầu bởi bachthaison, 25-11-2020 ![]() |
|
![]() |
||
Toán Trung học Cơ sở →
Bất đẳng thức và cực trị →
\sum \frac{a^2}{b^2+c^2}\geq \sum \frac{a}{b+c}Bắt đầu bởi bachthaison, 22-11-2020 ![]() |
|
![]() |
||
Toán Trung học Cơ sở →
Bất đẳng thức và cực trị →
Tìm min $ \dfrac{2(x+3)^2+y^2+z^2-16}{2x^2+y^2+z^2} $Bắt đầu bởi Technology, 11-11-2020 ![]() |
|
![]() |
||
Toán Trung học Cơ sở →
Bất đẳng thức và cực trị →
$\sum\frac{1}{c+a} \geq \frac{5}{2}$Bắt đầu bởi DBS, 11-11-2020 ![]() |
|
![]() |
0 thành viên, 2 khách, 0 thành viên ẩn danh