Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$xf\left ( xy \right )+xyf\left ( x \right )\geq ...$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 quanchun98

quanchun98

    Binh nhất

  • Thành viên
  • 33 Bài viết

Đã gửi 25-07-2015 - 20:12

Tìm tất cả các hàm $f:\mathbb{R}\rightarrow \mathbb{R}$ thỏa mãn điều kiện: 

$xf\left ( xy \right )+xyf\left ( x \right )\geq f\left ( x^{2} \right )f\left ( y \right )+x^{2}y\forall x,y\in \mathbb{R}$



#2 cachuoi

cachuoi

    Trung sĩ

  • Thành viên
  • 117 Bài viết
  • Giới tính:Nam
  • Đến từ:hà nội
  • Sở thích:chả khoái gì

Đã gửi 01-08-2015 - 23:11

Cho x=y=1 có f(1)=1
Cho y=1 thì có 2x.f(x)>=x^2+f(x^2) (1)
Cho x=y=0 có f(0)=0 ta xét x khác 0 ,
Cho y=x ta có x.f(x^2)+x^2.f(x) >=f(x).f(x^2) +x^3 suy ra x^2.(f(x)-x)>=f(x^2)(f(x)-x) (2)
Nếu tồn tại x để f(x^2)<0 thì từ (2 )suy ra f(x)>=x với mọi x
Nếu tồn tại x để f(x)>x thì từ (2) ta cũng có ngay f(x^2)<x^2 vô lí suy ra f(x)=x nên f(x^2)=x^2 vô lý do ta gs tồn tại f(x^2)<0
Vậy f(x^2)>=0 với mọi x nên từ 1 ta có f(x) >=x/2 với mọi x >0 suy ra f(x^2)>=x^2/2 suy ra 2xf(x)>=(3/2 ).x^2 từ đây lại có f(x) >=3/4 x với mọi x cứ làm tương tự (thực ra xét dãy số ) thì có ngay f(x)>=x với mọi x >0
Bây giờ trong(2) gs tồn tại x để f(x) >x thì suy ra f(x^2)<x^2 vô lý vậy f(x)=x với mọi x >0
Tương tự với x<0 ta có ngay f(x)<=x từ (1)
Sau đó làm tương tự như trên cũng có ngay f(x)=x với mọi x<0
Kết luận f(x)=x với mọi x thuộc R




2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh